메뉴 건너뛰기




Volumn 209, Issue , 2016, Pages 1-22

Max-product neural network and quasi-interpolation operators activated by sigmoidal functions

Author keywords

Max product operators; Neural networks operators; Order of approximation; Sigmoidal functions; Uniform approximation

Indexed keywords


EID: 84971422843     PISSN: 00219045     EISSN: 10960430     Source Type: Journal    
DOI: 10.1016/j.jat.2016.05.001     Document Type: Article
Times cited : (60)

References (56)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appl. 1997, 212:237-262.
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 2
    • 84876301028 scopus 로고    scopus 로고
    • Intelligent Systems: Approximation by Artificial Neural Networks
    • Springer-Verlag, Berlin
    • Anastassiou G.A. Intelligent Systems: Approximation by Artificial Neural Networks. Intelligent Systems Reference Library 2011, vol. 19. Springer-Verlag, Berlin.
    • (2011) Intelligent Systems Reference Library , vol.19
    • Anastassiou, G.A.1
  • 3
    • 84971226819 scopus 로고    scopus 로고
    • Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind
    • Anastassiou G.A., Coroianu L., Gal S.G. Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind. J. Comput. Anal. Appl. 2010, 12(2):396-406.
    • (2010) J. Comput. Anal. Appl. , vol.12 , Issue.2 , pp. 396-406
    • Anastassiou, G.A.1    Coroianu, L.2    Gal, S.G.3
  • 4
    • 53249130636 scopus 로고    scopus 로고
    • φ-spaces in multidimensional setting
    • φ-spaces in multidimensional setting. J. Math. Anal. Appl. 2009, 349(2):317-334.
    • (2009) J. Math. Anal. Appl. , vol.349 , Issue.2 , pp. 317-334
    • Angeloni, L.1    Vinti, G.2
  • 5
    • 77954589773 scopus 로고    scopus 로고
    • Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators
    • Angeloni L., Vinti G. Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators. Numer. Funct. Anal. Optim. 2010, 31(5):519-548.
    • (2010) Numer. Funct. Anal. Optim. , vol.31 , Issue.5 , pp. 519-548
    • Angeloni, L.1    Vinti, G.2
  • 7
    • 73849099362 scopus 로고    scopus 로고
    • Prediction by samples from the past with error estimates covering discontinuous signals
    • Bardaro C., Butzer P.L., Stens R.L., Vinti G. Prediction by samples from the past with error estimates covering discontinuous signals. IEEE Trans. Inform. Theory 2010, 56(1):614-633.
    • (2010) IEEE Trans. Inform. Theory , vol.56 , Issue.1 , pp. 614-633
    • Bardaro, C.1    Butzer, P.L.2    Stens, R.L.3    Vinti, G.4
  • 8
    • 45949094366 scopus 로고    scopus 로고
    • On pointwise convergence of linear integral operators with homogeneous kernels
    • Bardaro C., Karsli H., Vinti G. On pointwise convergence of linear integral operators with homogeneous kernels. Integral Transforms Spec. Funct. 2008, 19(6):429-439.
    • (2008) Integral Transforms Spec. Funct. , vol.19 , Issue.6 , pp. 429-439
    • Bardaro, C.1    Karsli, H.2    Vinti, G.3
  • 10
    • 27844481668 scopus 로고    scopus 로고
    • A general approach to the convergence theorems of generalized sampling series
    • Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Appl. Anal. 1997, 64:203-217.
    • (1997) Appl. Anal. , vol.64 , pp. 203-217
    • Bardaro, C.1    Vinti, G.2
  • 11
    • 27844441875 scopus 로고    scopus 로고
    • An abstract approach to sampling type operators inspired by the work of P.L. Butzer-Part I-linear operators
    • Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer-Part I-linear operators. Sampl. Theory Signal Image Process. 2003, 2(3):271-296.
    • (2003) Sampl. Theory Signal Image Process. , vol.2 , Issue.3 , pp. 271-296
    • Bardaro, C.1    Vinti, G.2
  • 12
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 1993, 39(3):930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 14
    • 38249033946 scopus 로고
    • Approximation of continuous and discontinuous functions by generalized sampling series
    • Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50:25-39.
    • (1987) J. Approx. Theory , vol.50 , pp. 25-39
    • Butzer, P.L.1    Ries, S.2    Stens, R.L.3
  • 15
    • 67649743440 scopus 로고    scopus 로고
    • The approximation operators with sigmoidal functions
    • Cao F., Chen Z. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58(4):758-765.
    • (2009) Comput. Math. Appl. , vol.58 , Issue.4 , pp. 758-765
    • Cao, F.1    Chen, Z.2
  • 16
    • 84863018410 scopus 로고    scopus 로고
    • The construction and approximation of a class of neural networks operators with ramp functions
    • Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 2012, 14(1):101-112.
    • (2012) J. Comput. Anal. Appl. , vol.14 , Issue.1 , pp. 101-112
    • Cao, F.1    Chen, Z.2
  • 17
    • 0026727494 scopus 로고
    • Approximation of a function and its derivative with a neural network
    • Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Netw. 1992, 5(2):207-220.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 207-220
    • Cardaliaguet, P.1    Euvrard, G.2
  • 18
    • 77953536452 scopus 로고    scopus 로고
    • Approximation with neural networks activated by ramp sigmoids
    • Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 2010, 162:1450-1465.
    • (2010) J. Approx. Theory , vol.162 , pp. 1450-1465
    • Cheang, G.H.L.1
  • 19
    • 84921054675 scopus 로고    scopus 로고
    • Enhancement of thermographic images as tool for structural analysis in earthquake engineering
    • Cluni F., Costarelli D., Minotti A.M., Vinti G. Enhancement of thermographic images as tool for structural analysis in earthquake engineering. NDT & E Int. 2015, 70:60-72.
    • (2015) NDT & E Int. , vol.70 , pp. 60-72
    • Cluni, F.1    Costarelli, D.2    Minotti, A.M.3    Vinti, G.4
  • 20
    • 84923851309 scopus 로고    scopus 로고
    • Applications of sampling Kantorovich operators to thermographic images for seismic engineering
    • Cluni F., Costarelli D., Minotti A.M., Vinti G. Applications of sampling Kantorovich operators to thermographic images for seismic engineering. J. Comput. Anal. Appl. 2015, 19(4):602-617.
    • (2015) J. Comput. Anal. Appl. , vol.19 , Issue.4 , pp. 602-617
    • Cluni, F.1    Costarelli, D.2    Minotti, A.M.3    Vinti, G.4
  • 21
    • 84865552726 scopus 로고    scopus 로고
    • Approximation by nonlinear generalized sampling operators of max-product kind
    • Coroianu L., Gal S.G. Approximation by nonlinear generalized sampling operators of max-product kind. Sampl. Theory Signal Image Process. 2010, 9(1-3):59-75.
    • (2010) Sampl. Theory Signal Image Process. , vol.9 , Issue.1-3 , pp. 59-75
    • Coroianu, L.1    Gal, S.G.2
  • 22
    • 84865540744 scopus 로고    scopus 로고
    • Approximation by max-product sampling operators based on sinc-type kernels
    • Coroianu L., Gal S.G. Approximation by max-product sampling operators based on sinc-type kernels. Sampl. Theory Signal Image Process. 2011, 10(3):211-230.
    • (2011) Sampl. Theory Signal Image Process. , vol.10 , Issue.3 , pp. 211-230
    • Coroianu, L.1    Gal, S.G.2
  • 23
    • 84971206693 scopus 로고    scopus 로고
    • Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels
    • Coroianu L., Gal S.G. Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels. Sampl. Theory Signal Image Process. 2012, 11(1):113-132.
    • (2012) Sampl. Theory Signal Image Process. , vol.11 , Issue.1 , pp. 113-132
    • Coroianu, L.1    Gal, S.G.2
  • 24
    • 84912051404 scopus 로고    scopus 로고
    • Saturation and inverse results for the Bernstein max-product operator
    • Coroianu L., Gal S.G. Saturation and inverse results for the Bernstein max-product operator. Period. Math. Hungar. 2014, 69:126-133.
    • (2014) Period. Math. Hungar. , vol.69 , pp. 126-133
    • Coroianu, L.1    Gal, S.G.2
  • 26
    • 84902360925 scopus 로고    scopus 로고
    • Interpolation by neural network operators activated by ramp functions
    • Costarelli D. Interpolation by neural network operators activated by ramp functions. J. Math. Anal. Appl. 2014, 419:574-582.
    • (2014) J. Math. Anal. Appl. , vol.419 , pp. 574-582
    • Costarelli, D.1
  • 27
    • 84926293410 scopus 로고    scopus 로고
    • Neural network operators: constructive interpolation of multivariate functions
    • Costarelli D. Neural network operators: constructive interpolation of multivariate functions. Neural Netw. 2015, 67:28-36.
    • (2015) Neural Netw. , vol.67 , pp. 28-36
    • Costarelli, D.1
  • 28
    • 84882972393 scopus 로고    scopus 로고
    • Constructive approximation by superposition of sigmoidal functions
    • Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Anal. Theory Appl. 2013, 29(2):169-196.
    • (2013) Anal. Theory Appl. , vol.29 , Issue.2 , pp. 169-196
    • Costarelli, D.1    Spigler, R.2
  • 29
    • 84883037302 scopus 로고    scopus 로고
    • Solving Volterra integral equations of the second kind by sigmoidal functions approximations
    • Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
    • (2013) J. Integral Equations Appl. , vol.25 , Issue.2 , pp. 193-222
    • Costarelli, D.1    Spigler, R.2
  • 30
    • 84876320512 scopus 로고    scopus 로고
    • Approximation results for neural network operators activated by sigmoidal functions
    • Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 2013, 44:101-106.
    • (2013) Neural Netw. , vol.44 , pp. 101-106
    • Costarelli, D.1    Spigler, R.2
  • 31
    • 84883048212 scopus 로고    scopus 로고
    • Multivariate neural network operators with sigmoidal activation functions
    • Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Netw. 2013, 48:72-77.
    • (2013) Neural Netw. , vol.48 , pp. 72-77
    • Costarelli, D.1    Spigler, R.2
  • 32
    • 84898686004 scopus 로고    scopus 로고
    • A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
    • Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
    • (2014) J. Integral Equations Appl. , vol.26 , Issue.1 , pp. 15-52
    • Costarelli, D.1    Spigler, R.2
  • 33
    • 84903833787 scopus 로고    scopus 로고
    • Convergence of a family of neural network operators of the Kantorovich type
    • Costarelli D., Spigler R. Convergence of a family of neural network operators of the Kantorovich type. J. Approx. Theory 2014, 185:80-90.
    • (2014) J. Approx. Theory , vol.185 , pp. 80-90
    • Costarelli, D.1    Spigler, R.2
  • 34
    • 84926311345 scopus 로고    scopus 로고
    • Approximation by series of sigmoidal functions with applications to neural networks
    • Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Ann. Mat. Pura Appl. 2015, 194(1):289-306.
    • (2015) Ann. Mat. Pura Appl. , vol.194 , Issue.1 , pp. 289-306
    • Costarelli, D.1    Spigler, R.2
  • 35
    • 84874596412 scopus 로고    scopus 로고
    • Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces
    • Costarelli D., Vinti G. Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces. Boll. Unione Mat. Ital. (9) 2011, IV:445-468.
    • (2011) Boll. Unione Mat. Ital. (9) , vol.4 , pp. 445-468
    • Costarelli, D.1    Vinti, G.2
  • 36
    • 84880406518 scopus 로고    scopus 로고
    • Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing
    • Costarelli D., Vinti G. Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing. Numer. Funct. Anal. Optim. 2013, 34(8):819-844.
    • (2013) Numer. Funct. Anal. Optim. , vol.34 , Issue.8 , pp. 819-844
    • Costarelli, D.1    Vinti, G.2
  • 37
    • 84903447886 scopus 로고    scopus 로고
    • Order of approximation for sampling Kantorovich operators
    • Costarelli D., Vinti G. Order of approximation for sampling Kantorovich operators. J. Integral Equations Appl. 2014, 26(3):345-368.
    • (2014) J. Integral Equations Appl. , vol.26 , Issue.3 , pp. 345-368
    • Costarelli, D.1    Vinti, G.2
  • 38
    • 84923838138 scopus 로고    scopus 로고
    • Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces
    • Costarelli D., Vinti G. Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces. J. Integral Equations Appl. 2014, 26(4):455-481.
    • (2014) J. Integral Equations Appl. , vol.26 , Issue.4 , pp. 455-481
    • Costarelli, D.1    Vinti, G.2
  • 39
    • 84938261790 scopus 로고    scopus 로고
    • Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces
    • Costarelli D., Vinti G. Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces. Numer. Funct. Anal. Optim. 2015, 36(8):964-990.
    • (2015) Numer. Funct. Anal. Optim. , vol.36 , Issue.8 , pp. 964-990
    • Costarelli, D.1    Vinti, G.2
  • 40
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 42
    • 0038686384 scopus 로고    scopus 로고
    • Approximation by neural network with a bounded number of nodes at each level
    • Gripenberg G. Approximation by neural network with a bounded number of nodes at each level. J. Approx. Theory 2003, 122(2):260-266.
    • (2003) J. Approx. Theory , vol.122 , Issue.2 , pp. 260-266
    • Gripenberg, G.1
  • 43
    • 84899078982 scopus 로고    scopus 로고
    • On the approximation by neural networks with bounded number of neurons in hidden layers
    • Ismailov V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 2014, 417(2):963-969.
    • (2014) J. Math. Anal. Appl. , vol.417 , Issue.2 , pp. 963-969
    • Ismailov, V.E.1
  • 44
    • 21344441889 scopus 로고    scopus 로고
    • Nonlinearity creates linear independence
    • Ito Y. Nonlinearity creates linear independence. Adv. Comput. Math. 1996, 5:189-203.
    • (1996) Adv. Comput. Math. , vol.5 , pp. 189-203
    • Ito, Y.1
  • 45
    • 0042162507 scopus 로고    scopus 로고
    • Independence of unscaled basis functions and finite mappings by neural networks
    • Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 2001, 26:117-126.
    • (2001) Math. Sci. , vol.26 , pp. 117-126
    • Ito, Y.1
  • 46
    • 0009625590 scopus 로고    scopus 로고
    • Superposition of linearly independent functions and finite mappings by neural networks
    • Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 1996, 21:27-33.
    • (1996) Math. Sci. , vol.21 , pp. 27-33
    • Ito, Y.1    Saito, K.2
  • 47
    • 70350222271 scopus 로고    scopus 로고
    • An integral upper bound for neural network approximation
    • Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Comput. 2009, 21:2970-2989.
    • (2009) Neural Comput. , vol.21 , pp. 2970-2989
    • Kainen, P.C.1    Kurková, V.2
  • 48
    • 0041829446 scopus 로고    scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Lewicki G., Marino G. Approximation by superpositions of a sigmoidal function. Z. Angew. Math. Phys. 2003, 22(2):463-470.
    • (2003) Z. Angew. Math. Phys. , vol.22 , Issue.2 , pp. 463-470
    • Lewicki, G.1    Marino, G.2
  • 49
    • 28244460747 scopus 로고    scopus 로고
    • Constructive approximate interpolation by neural networks
    • Llanas B., Sainz F.J. Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 2006, 188:283-308.
    • (2006) J. Comput. Appl. Math. , vol.188 , pp. 283-308
    • Llanas, B.1    Sainz, F.J.2
  • 50
    • 30344432717 scopus 로고    scopus 로고
    • Approximation by neural networks and learning theory
    • Maiorov V. Approximation by neural networks and learning theory. J. Complexity 2006, 22(1):102-117.
    • (2006) J. Complexity , vol.22 , Issue.1 , pp. 102-117
    • Maiorov, V.1
  • 51
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95(2):215-228.
    • (1998) J. Approx. Theory , vol.95 , Issue.2 , pp. 215-228
    • Makovoz, Y.1
  • 52
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag E.D. Feedforward nets for interpolation and classification. J. Comput. System Sci. 1992, 45:20-48.
    • (1992) J. Comput. System Sci. , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 53
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network
    • Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. IEEE Trans. Neural Netw. 1997, 8(2):251-255.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 54
    • 70449519405 scopus 로고    scopus 로고
    • Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces
    • Vinti G., Zampogni L. Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces. J. Approx. Theory 2009, 161(2):511-528.
    • (2009) J. Approx. Theory , vol.161 , Issue.2 , pp. 511-528
    • Vinti, G.1    Zampogni, L.2
  • 55
    • 84874638760 scopus 로고    scopus 로고
    • A unifying approach to convergence of linear sampling type operators in Orlicz spaces
    • Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Adv. Differential Equations 2011, 16(5-6):573-600.
    • (2011) Adv. Differential Equations , vol.16 , Issue.5-6 , pp. 573-600
    • Vinti, G.1    Zampogni, L.2
  • 56
    • 84910058049 scopus 로고    scopus 로고
    • Approximation results for a general class of Kantorovich type operators
    • Vinti G., Zampogni L. Approximation results for a general class of Kantorovich type operators. Adv. Nonlinear Stud. 2014, 14:991-1011.
    • (2014) Adv. Nonlinear Stud. , vol.14 , pp. 991-1011
    • Vinti, G.1    Zampogni, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.