-
1
-
-
0031195377
-
Rate of convergence of some neural network operators to the unit-univariate case
-
Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appl. 1997, 212:237-262.
-
(1997)
J. Math. Anal. Appl.
, vol.212
, pp. 237-262
-
-
Anastassiou, G.A.1
-
2
-
-
84876301028
-
Intelligent Systems: Approximation by Artificial Neural Networks
-
Springer-Verlag, Berlin
-
Anastassiou G.A. Intelligent Systems: Approximation by Artificial Neural Networks. Intelligent Systems Reference Library 2011, vol. 19. Springer-Verlag, Berlin.
-
(2011)
Intelligent Systems Reference Library
, vol.19
-
-
Anastassiou, G.A.1
-
3
-
-
84971226819
-
Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind
-
Anastassiou G.A., Coroianu L., Gal S.G. Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind. J. Comput. Anal. Appl. 2010, 12(2):396-406.
-
(2010)
J. Comput. Anal. Appl.
, vol.12
, Issue.2
, pp. 396-406
-
-
Anastassiou, G.A.1
Coroianu, L.2
Gal, S.G.3
-
4
-
-
53249130636
-
φ-spaces in multidimensional setting
-
φ-spaces in multidimensional setting. J. Math. Anal. Appl. 2009, 349(2):317-334.
-
(2009)
J. Math. Anal. Appl.
, vol.349
, Issue.2
, pp. 317-334
-
-
Angeloni, L.1
Vinti, G.2
-
5
-
-
77954589773
-
Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators
-
Angeloni L., Vinti G. Approximation with respect to Goffman-Serrin variation by means of non-convolution type integral operators. Numer. Funct. Anal. Optim. 2010, 31(5):519-548.
-
(2010)
Numer. Funct. Anal. Optim.
, vol.31
, Issue.5
, pp. 519-548
-
-
Angeloni, L.1
Vinti, G.2
-
6
-
-
33846326538
-
Kantorovich-type generalized sampling series in the setting of Orlicz spaces
-
Bardaro C., Butzer P.L., Stens R.L., Vinti G. Kantorovich-type generalized sampling series in the setting of Orlicz spaces. Sampl. Theory Signal Image Process. 2007, 6(1):29-52.
-
(2007)
Sampl. Theory Signal Image Process.
, vol.6
, Issue.1
, pp. 29-52
-
-
Bardaro, C.1
Butzer, P.L.2
Stens, R.L.3
Vinti, G.4
-
7
-
-
73849099362
-
Prediction by samples from the past with error estimates covering discontinuous signals
-
Bardaro C., Butzer P.L., Stens R.L., Vinti G. Prediction by samples from the past with error estimates covering discontinuous signals. IEEE Trans. Inform. Theory 2010, 56(1):614-633.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, Issue.1
, pp. 614-633
-
-
Bardaro, C.1
Butzer, P.L.2
Stens, R.L.3
Vinti, G.4
-
8
-
-
45949094366
-
On pointwise convergence of linear integral operators with homogeneous kernels
-
Bardaro C., Karsli H., Vinti G. On pointwise convergence of linear integral operators with homogeneous kernels. Integral Transforms Spec. Funct. 2008, 19(6):429-439.
-
(2008)
Integral Transforms Spec. Funct.
, vol.19
, Issue.6
, pp. 429-439
-
-
Bardaro, C.1
Karsli, H.2
Vinti, G.3
-
9
-
-
27844583054
-
Nonlinear Integral Operators and Applications
-
New York, Berlin
-
C. Bardaro, J. Musielak, G. Vinti, Nonlinear Integral Operators and Applications, in: De Gruyter Series in Nonlinear Analysis and Applications, vol. 9, New York, Berlin, 2003.
-
(2003)
De Gruyter Series in Nonlinear Analysis and Applications
, vol.9
-
-
Bardaro, C.1
Musielak, J.2
Vinti, G.3
-
10
-
-
27844481668
-
A general approach to the convergence theorems of generalized sampling series
-
Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Appl. Anal. 1997, 64:203-217.
-
(1997)
Appl. Anal.
, vol.64
, pp. 203-217
-
-
Bardaro, C.1
Vinti, G.2
-
11
-
-
27844441875
-
An abstract approach to sampling type operators inspired by the work of P.L. Butzer-Part I-linear operators
-
Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer-Part I-linear operators. Sampl. Theory Signal Image Process. 2003, 2(3):271-296.
-
(2003)
Sampl. Theory Signal Image Process.
, vol.2
, Issue.3
, pp. 271-296
-
-
Bardaro, C.1
Vinti, G.2
-
12
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 1993, 39(3):930-945.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
14
-
-
38249033946
-
Approximation of continuous and discontinuous functions by generalized sampling series
-
Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50:25-39.
-
(1987)
J. Approx. Theory
, vol.50
, pp. 25-39
-
-
Butzer, P.L.1
Ries, S.2
Stens, R.L.3
-
15
-
-
67649743440
-
The approximation operators with sigmoidal functions
-
Cao F., Chen Z. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58(4):758-765.
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.4
, pp. 758-765
-
-
Cao, F.1
Chen, Z.2
-
16
-
-
84863018410
-
The construction and approximation of a class of neural networks operators with ramp functions
-
Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 2012, 14(1):101-112.
-
(2012)
J. Comput. Anal. Appl.
, vol.14
, Issue.1
, pp. 101-112
-
-
Cao, F.1
Chen, Z.2
-
17
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Netw. 1992, 5(2):207-220.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
18
-
-
77953536452
-
Approximation with neural networks activated by ramp sigmoids
-
Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 2010, 162:1450-1465.
-
(2010)
J. Approx. Theory
, vol.162
, pp. 1450-1465
-
-
Cheang, G.H.L.1
-
19
-
-
84921054675
-
Enhancement of thermographic images as tool for structural analysis in earthquake engineering
-
Cluni F., Costarelli D., Minotti A.M., Vinti G. Enhancement of thermographic images as tool for structural analysis in earthquake engineering. NDT & E Int. 2015, 70:60-72.
-
(2015)
NDT & E Int.
, vol.70
, pp. 60-72
-
-
Cluni, F.1
Costarelli, D.2
Minotti, A.M.3
Vinti, G.4
-
20
-
-
84923851309
-
Applications of sampling Kantorovich operators to thermographic images for seismic engineering
-
Cluni F., Costarelli D., Minotti A.M., Vinti G. Applications of sampling Kantorovich operators to thermographic images for seismic engineering. J. Comput. Anal. Appl. 2015, 19(4):602-617.
-
(2015)
J. Comput. Anal. Appl.
, vol.19
, Issue.4
, pp. 602-617
-
-
Cluni, F.1
Costarelli, D.2
Minotti, A.M.3
Vinti, G.4
-
21
-
-
84865552726
-
Approximation by nonlinear generalized sampling operators of max-product kind
-
Coroianu L., Gal S.G. Approximation by nonlinear generalized sampling operators of max-product kind. Sampl. Theory Signal Image Process. 2010, 9(1-3):59-75.
-
(2010)
Sampl. Theory Signal Image Process.
, vol.9
, Issue.1-3
, pp. 59-75
-
-
Coroianu, L.1
Gal, S.G.2
-
22
-
-
84865540744
-
Approximation by max-product sampling operators based on sinc-type kernels
-
Coroianu L., Gal S.G. Approximation by max-product sampling operators based on sinc-type kernels. Sampl. Theory Signal Image Process. 2011, 10(3):211-230.
-
(2011)
Sampl. Theory Signal Image Process.
, vol.10
, Issue.3
, pp. 211-230
-
-
Coroianu, L.1
Gal, S.G.2
-
23
-
-
84971206693
-
Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels
-
Coroianu L., Gal S.G. Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels. Sampl. Theory Signal Image Process. 2012, 11(1):113-132.
-
(2012)
Sampl. Theory Signal Image Process.
, vol.11
, Issue.1
, pp. 113-132
-
-
Coroianu, L.1
Gal, S.G.2
-
24
-
-
84912051404
-
Saturation and inverse results for the Bernstein max-product operator
-
Coroianu L., Gal S.G. Saturation and inverse results for the Bernstein max-product operator. Period. Math. Hungar. 2014, 69:126-133.
-
(2014)
Period. Math. Hungar.
, vol.69
, pp. 126-133
-
-
Coroianu, L.1
Gal, S.G.2
-
26
-
-
84902360925
-
Interpolation by neural network operators activated by ramp functions
-
Costarelli D. Interpolation by neural network operators activated by ramp functions. J. Math. Anal. Appl. 2014, 419:574-582.
-
(2014)
J. Math. Anal. Appl.
, vol.419
, pp. 574-582
-
-
Costarelli, D.1
-
27
-
-
84926293410
-
Neural network operators: constructive interpolation of multivariate functions
-
Costarelli D. Neural network operators: constructive interpolation of multivariate functions. Neural Netw. 2015, 67:28-36.
-
(2015)
Neural Netw.
, vol.67
, pp. 28-36
-
-
Costarelli, D.1
-
28
-
-
84882972393
-
Constructive approximation by superposition of sigmoidal functions
-
Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Anal. Theory Appl. 2013, 29(2):169-196.
-
(2013)
Anal. Theory Appl.
, vol.29
, Issue.2
, pp. 169-196
-
-
Costarelli, D.1
Spigler, R.2
-
29
-
-
84883037302
-
Solving Volterra integral equations of the second kind by sigmoidal functions approximations
-
Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
-
(2013)
J. Integral Equations Appl.
, vol.25
, Issue.2
, pp. 193-222
-
-
Costarelli, D.1
Spigler, R.2
-
30
-
-
84876320512
-
Approximation results for neural network operators activated by sigmoidal functions
-
Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 2013, 44:101-106.
-
(2013)
Neural Netw.
, vol.44
, pp. 101-106
-
-
Costarelli, D.1
Spigler, R.2
-
31
-
-
84883048212
-
Multivariate neural network operators with sigmoidal activation functions
-
Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Netw. 2013, 48:72-77.
-
(2013)
Neural Netw.
, vol.48
, pp. 72-77
-
-
Costarelli, D.1
Spigler, R.2
-
32
-
-
84898686004
-
A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
-
Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
-
(2014)
J. Integral Equations Appl.
, vol.26
, Issue.1
, pp. 15-52
-
-
Costarelli, D.1
Spigler, R.2
-
33
-
-
84903833787
-
Convergence of a family of neural network operators of the Kantorovich type
-
Costarelli D., Spigler R. Convergence of a family of neural network operators of the Kantorovich type. J. Approx. Theory 2014, 185:80-90.
-
(2014)
J. Approx. Theory
, vol.185
, pp. 80-90
-
-
Costarelli, D.1
Spigler, R.2
-
34
-
-
84926311345
-
Approximation by series of sigmoidal functions with applications to neural networks
-
Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Ann. Mat. Pura Appl. 2015, 194(1):289-306.
-
(2015)
Ann. Mat. Pura Appl.
, vol.194
, Issue.1
, pp. 289-306
-
-
Costarelli, D.1
Spigler, R.2
-
35
-
-
84874596412
-
Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces
-
Costarelli D., Vinti G. Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces. Boll. Unione Mat. Ital. (9) 2011, IV:445-468.
-
(2011)
Boll. Unione Mat. Ital. (9)
, vol.4
, pp. 445-468
-
-
Costarelli, D.1
Vinti, G.2
-
36
-
-
84880406518
-
Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing
-
Costarelli D., Vinti G. Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing. Numer. Funct. Anal. Optim. 2013, 34(8):819-844.
-
(2013)
Numer. Funct. Anal. Optim.
, vol.34
, Issue.8
, pp. 819-844
-
-
Costarelli, D.1
Vinti, G.2
-
37
-
-
84903447886
-
Order of approximation for sampling Kantorovich operators
-
Costarelli D., Vinti G. Order of approximation for sampling Kantorovich operators. J. Integral Equations Appl. 2014, 26(3):345-368.
-
(2014)
J. Integral Equations Appl.
, vol.26
, Issue.3
, pp. 345-368
-
-
Costarelli, D.1
Vinti, G.2
-
38
-
-
84923838138
-
Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces
-
Costarelli D., Vinti G. Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces. J. Integral Equations Appl. 2014, 26(4):455-481.
-
(2014)
J. Integral Equations Appl.
, vol.26
, Issue.4
, pp. 455-481
-
-
Costarelli, D.1
Vinti, G.2
-
39
-
-
84938261790
-
Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces
-
Costarelli D., Vinti G. Degree of approximation for nonlinear multivariate sampling Kantorovich operators on some functions spaces. Numer. Funct. Anal. Optim. 2015, 36(8):964-990.
-
(2015)
Numer. Funct. Anal. Optim.
, vol.36
, Issue.8
, pp. 964-990
-
-
Costarelli, D.1
Vinti, G.2
-
40
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
-
(1989)
Math. Control Signals Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
42
-
-
0038686384
-
Approximation by neural network with a bounded number of nodes at each level
-
Gripenberg G. Approximation by neural network with a bounded number of nodes at each level. J. Approx. Theory 2003, 122(2):260-266.
-
(2003)
J. Approx. Theory
, vol.122
, Issue.2
, pp. 260-266
-
-
Gripenberg, G.1
-
43
-
-
84899078982
-
On the approximation by neural networks with bounded number of neurons in hidden layers
-
Ismailov V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 2014, 417(2):963-969.
-
(2014)
J. Math. Anal. Appl.
, vol.417
, Issue.2
, pp. 963-969
-
-
Ismailov, V.E.1
-
44
-
-
21344441889
-
Nonlinearity creates linear independence
-
Ito Y. Nonlinearity creates linear independence. Adv. Comput. Math. 1996, 5:189-203.
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 189-203
-
-
Ito, Y.1
-
45
-
-
0042162507
-
Independence of unscaled basis functions and finite mappings by neural networks
-
Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 2001, 26:117-126.
-
(2001)
Math. Sci.
, vol.26
, pp. 117-126
-
-
Ito, Y.1
-
46
-
-
0009625590
-
Superposition of linearly independent functions and finite mappings by neural networks
-
Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 1996, 21:27-33.
-
(1996)
Math. Sci.
, vol.21
, pp. 27-33
-
-
Ito, Y.1
Saito, K.2
-
47
-
-
70350222271
-
An integral upper bound for neural network approximation
-
Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Comput. 2009, 21:2970-2989.
-
(2009)
Neural Comput.
, vol.21
, pp. 2970-2989
-
-
Kainen, P.C.1
Kurková, V.2
-
48
-
-
0041829446
-
Approximation by superpositions of a sigmoidal function
-
Lewicki G., Marino G. Approximation by superpositions of a sigmoidal function. Z. Angew. Math. Phys. 2003, 22(2):463-470.
-
(2003)
Z. Angew. Math. Phys.
, vol.22
, Issue.2
, pp. 463-470
-
-
Lewicki, G.1
Marino, G.2
-
49
-
-
28244460747
-
Constructive approximate interpolation by neural networks
-
Llanas B., Sainz F.J. Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 2006, 188:283-308.
-
(2006)
J. Comput. Appl. Math.
, vol.188
, pp. 283-308
-
-
Llanas, B.1
Sainz, F.J.2
-
50
-
-
30344432717
-
Approximation by neural networks and learning theory
-
Maiorov V. Approximation by neural networks and learning theory. J. Complexity 2006, 22(1):102-117.
-
(2006)
J. Complexity
, vol.22
, Issue.1
, pp. 102-117
-
-
Maiorov, V.1
-
51
-
-
0001574595
-
Uniform approximation by neural networks
-
Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95(2):215-228.
-
(1998)
J. Approx. Theory
, vol.95
, Issue.2
, pp. 215-228
-
-
Makovoz, Y.1
-
52
-
-
0026904597
-
Feedforward nets for interpolation and classification
-
Sontag E.D. Feedforward nets for interpolation and classification. J. Comput. System Sci. 1992, 45:20-48.
-
(1992)
J. Comput. System Sci.
, vol.45
, pp. 20-48
-
-
Sontag, E.D.1
-
53
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network
-
Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. IEEE Trans. Neural Netw. 1997, 8(2):251-255.
-
(1997)
IEEE Trans. Neural Netw.
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
54
-
-
70449519405
-
Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces
-
Vinti G., Zampogni L. Approximation by means of nonlinear Kantorovich sampling type operators in Orlicz spaces. J. Approx. Theory 2009, 161(2):511-528.
-
(2009)
J. Approx. Theory
, vol.161
, Issue.2
, pp. 511-528
-
-
Vinti, G.1
Zampogni, L.2
-
55
-
-
84874638760
-
A unifying approach to convergence of linear sampling type operators in Orlicz spaces
-
Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Adv. Differential Equations 2011, 16(5-6):573-600.
-
(2011)
Adv. Differential Equations
, vol.16
, Issue.5-6
, pp. 573-600
-
-
Vinti, G.1
Zampogni, L.2
-
56
-
-
84910058049
-
Approximation results for a general class of Kantorovich type operators
-
Vinti G., Zampogni L. Approximation results for a general class of Kantorovich type operators. Adv. Nonlinear Stud. 2014, 14:991-1011.
-
(2014)
Adv. Nonlinear Stud.
, vol.14
, pp. 991-1011
-
-
Vinti, G.1
Zampogni, L.2
|