메뉴 건너뛰기




Volumn 9, Issue 4, 2016, Pages 359-398

Computational intelligence techniques for HVAC systems: A review

Author keywords

buildings; computational intelligence; energy conservation; energy efficiency; heating; optimization; ventilation and airconditioning (HVAC)

Indexed keywords

AIR CONDITIONING; AIR QUALITY; ARTIFICIAL INTELLIGENCE; BUILDINGS; CLIMATE CONTROL; COMPUTATION THEORY; DESIGN; ENERGY CONSERVATION; ENERGY EFFICIENCY; ENERGY UTILIZATION; FAULT DETECTION; GAS EMISSIONS; GENETIC ALGORITHMS; GREENHOUSE GASES; HEATING; HISTORIC PRESERVATION; INDOOR AIR POLLUTION; INTELLIGENT AGENTS; MATLAB; MULTI AGENT SYSTEMS; QUALITY CONTROL;

EID: 84971246176     PISSN: 19963599     EISSN: 19968744     Source Type: Journal    
DOI: 10.1007/s12273-016-0285-4     Document Type: Review
Times cited : (187)

References (190)
  • 1
    • 33947382610 scopus 로고    scopus 로고
    • Fuzzy logic based energy saving technique for a central air conditioning system
    • Ahmed SS, Majid MS, Novia H, Rahman HA (2007). Fuzzy logic based energy saving technique for a central air conditioning system. Energy, 32: 1222–1234.
    • (2007) Energ , vol.32 , pp. 1222-1234
    • Ahmed, S.S.1    Majid, M.S.2    Novia, H.3    Rahman, H.A.4
  • 3
    • 33947361081 scopus 로고    scopus 로고
    • Fuzzy rule reduction and tuning of fuzzy logic controllers for a HVAC system
    • Kahraman C, (ed), Springer, Berlin
    • Alcalá R, Alcalá-Fdez J, Gacto M, Herrera F (2006). Fuzzy rule reduction and tuning of fuzzy logic controllers for a HVAC system. In: Kahraman C (ed), Fuzzy Applications in Industrial Engineering, Volume 201 of Studies in Fuzziness and Soft Computing. Berlin: Springer, pp. 89–117.
    • (2006) Fuzzy Applications in Industrial Engineerin , pp. 89-117
    • Alcalá, R.1    Alcalá-Fdez, J.2    Gacto, M.3    Herrera, F.4
  • 4
    • 84973285525 scopus 로고    scopus 로고
    • Developing of a fuzzy logic controller for air conditioning system
    • Ali IM (2012). Developing of a fuzzy logic controller for air conditioning system. Anbar Journal for Engineering Sciences, 5: 180–187.
    • (2012) Anbar Journal for Engineering Science , vol.5 , pp. 180-187
    • Ali, I.M.1
  • 6
    • 0034266825 scopus 로고    scopus 로고
    • Development of a neural network heating controller for solar buildings
    • Argiriou A, Bellas-Velidis I, Balaras C (2000). Development of a neural network heating controller for solar buildings. Neural Networks, 13: 811–820.
    • (2000) Neural Network , vol.13 , pp. 811-820
    • Argiriou, A.1    Bellas-Velidis, I.2    Balaras, C.3
  • 7
    • 1642412620 scopus 로고    scopus 로고
    • A neural network controller for hydronic heating systems of solar buildings
    • Argiriou AA, Bellas-Velidis I, Kummert M, André P (2004). A neural network controller for hydronic heating systems of solar buildings. Neural Networks, 17: 427–440.
    • (2004) Neural Network , vol.17 , pp. 427-440
    • Argiriou, A.A.1    Bellas-Velidis, I.2    Kummert, M.3    André, P.4
  • 8
    • 80052792008 scopus 로고    scopus 로고
    • American Society of Heating Refrigeration and Air-Conditioning Engineers, Atlanta
    • ASHRAE (2009). Handbook of Fundamentals. Atlanta: American Society of Heating Refrigeration and Air-Conditioning Engineers.
    • (2009) Handbook of Fundamentals
  • 10
    • 0003485312 scopus 로고
    • The behavior of adaptive systems which employ genetic and correlative algorithms
    • University of Michigan, USA
    • Bagley J (1967). The behavior of adaptive systems which employ genetic and correlative algorithms. PhD Thesis, University of Michigan, USA.
    • (1967) PhD Thesi
    • Bagley, J.1
  • 11
    • 0036758568 scopus 로고    scopus 로고
    • Energy conservation in buildings through efficient A/C control using neural networks
    • Ben-Nakhi AE, Mahmoud MA (2002). Energy conservation in buildings through efficient A/C control using neural networks. Applied Energy, 73: 5–23.
    • (2002) Applied Energ , vol.73 , pp. 5-23
    • Ben-Nakhi, A.E.1    Mahmoud, M.A.2
  • 12
    • 0012081736 scopus 로고    scopus 로고
    • Computational intelligence defined - by everyone
    • Kaynak O, Zadeh L, Trken B, Rudas I, (eds), Springer, Berlin
    • Bezdek J (1998). Computational intelligence defined - by everyone! In: Kaynak O, Zadeh L, Trken B, Rudas I (eds), Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, Volume 162 of NATO ASI Series. Berlin: Springer, pp. 10–37.
    • (1998) Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Application , pp. 10-37
    • Bezdek, J.1
  • 13
    • 80755138390 scopus 로고    scopus 로고
    • Optimization of envelope and HVAC systems selection for residential buildings
    • Bichiou Y, Krarti M (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43: 3373–3382.
    • (2011) Energy and Building , vol.43 , pp. 3373-3382
    • Bichiou, Y.1    Krarti, M.2
  • 15
    • 84864368029 scopus 로고    scopus 로고
    • Building Performance Institute Europe, Brussels
    • BPIE (2011). Europe’s buildings under the microscope. Brussels: Building Performance Institute Europe.
    • (2011) Europe’s buildings under the microscop
  • 17
    • 77956231163 scopus 로고    scopus 로고
    • Comparing different control strategies for indoor thermal comfort aimed at the evaluation of the energy cost of quality of building
    • Calvino F, Gennusa ML, Morale M, Rizzo G, Scaccianoce G (2010). Comparing different control strategies for indoor thermal comfort aimed at the evaluation of the energy cost of quality of building. Applied Thermal Engineering, 30: 2386–2395.
    • (2010) Applied Thermal Engineerin , vol.30 , pp. 2386-2395
    • Calvino, F.1    Gennusa, M.L.2    Morale, M.3    Rizzo, G.4    Scaccianoce, G.5
  • 18
    • 0025889915 scopus 로고
    • ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network
    • Carpenter GA, Grossberg S, Reynolds JH (1991). ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 4: 565–588.
    • (1991) Neural Network , vol.4 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 19
    • 33645403631 scopus 로고    scopus 로고
    • Flow meter fault isolation in building central chilling systems using wavelet analysis
    • Chen Y, Hao X, Zhang G, Wang S (2006). Flow meter fault isolation in building central chilling systems using wavelet analysis. Energy Conversion and Management, 47: 1700–1710.
    • (2006) Energy Conversion and Managemen , vol.47 , pp. 1700-1710
    • Chen, Y.1    Hao, X.2    Zhang, G.3    Wang, S.4
  • 22
    • 0036027846 scopus 로고    scopus 로고
    • Global optimization of absorption chiller system by genetic algorithm and neural network
    • Chow T, Zhang G, Lin Z, Song C (2002). Global optimization of absorption chiller system by genetic algorithm and neural network. Energy and Buildings, 34: 103–109.
    • (2002) Energy and Building , vol.34 , pp. 103-109
    • Chow, T.1    Zhang, G.2    Lin, Z.3    Song, C.4
  • 23
    • 15744391669 scopus 로고    scopus 로고
    • Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic
    • Chu CM, Jong T-L, Huang Y-W (2005). Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic. Energy Conversion and Management, 46: 1579–1593.
    • (2005) Energy Conversion and Managemen , vol.46 , pp. 1579-1593
    • Chu, C.M.1    Jong, T.-L.2    Huang, Y.-W.3
  • 24
    • 84971312292 scopus 로고    scopus 로고
    • Chartered Institution of Building Services Engineers, London
    • CIBSE (2006). Guide A: Environmental Design. London: Chartered Institution of Building Services Engineers.
    • (2006) Guide A: Environmental Desig
  • 26
    • 84869871543 scopus 로고    scopus 로고
    • Building operation and energy performance: Monitoring, analysis and optimization toolkit
    • Costa A, Keane MM, Torrens JI, Corry E (2013). Building operation and energy performance: Monitoring, analysis and optimization toolkit. Applied Energy, 101: 310–316.
    • (2013) Applied Energ , vol.101 , pp. 310-316
    • Costa, A.1    Keane, M.M.2    Torrens, J.I.3    Corry, E.4
  • 27
    • 84886067969 scopus 로고    scopus 로고
    • Robust nonlinear HVAC systems control with evolutionary optimization
    • Counsell J, Zaher O, Brindley J, Murphy G (2013). Robust nonlinear HVAC systems control with evolutionary optimization. Engineering Computations, 30: 1147–1169.
    • (2013) Engineering Computation , vol.30 , pp. 1147-1169
    • Counsell, J.1    Zaher, O.2    Brindley, J.3    Murphy, G.4
  • 29
  • 30
    • 84893214709 scopus 로고    scopus 로고
    • Robust fault tolerant application for HVAC system based on combination of online SVM and ANN black box model
    • Dehestani D, Su S, Nguyen H, Guo Y (2013). Robust fault tolerant application for HVAC system based on combination of online SVM and ANN black box model. In: Proceedings of European Control Conference (ECC), pp. 2976–2981.
    • (2013) Proceedings of European Control Conference (ECC , pp. 2976-2981
    • Dehestani, D.1    Su, S.2    Nguyen, H.3    Guo, Y.4
  • 33
    • 64249158703 scopus 로고    scopus 로고
    • Advanced control systems engineering for energy and comfort management in a building environment— A review
    • Dounis AI, Caraiscos C (2009). Advanced control systems engineering for energy and comfort management in a building environment— A review. Renewable and Sustainable Energy Reviews, 13: 1246–1261.
    • (2009) Renewable and Sustainable Energy Review , vol.13 , pp. 1246-1261
    • Dounis, A.I.1    Caraiscos, C.2
  • 34
    • 34147173292 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on improved PCA with JAA method in VAV systems
    • Du Z, Jin X, Wu L (2007a). Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Building and Environment, 42: 3221–3232.
    • (2007) Building and Environmen , vol.42 , pp. 3221-3232
    • Du, Z.1    Jin, X.2    Wu, L.3
  • 35
    • 34247482738 scopus 로고    scopus 로고
    • PCA-FDA-based fault diagnosis for sensors in VAV systems
    • Du Z, Jin X, Wu L (2007b). PCA-FDA-based fault diagnosis for sensors in VAV systems. HVAC&R Research, 13: 349–367.
    • (2007) HVAC&R Researc , vol.13 , pp. 349-367
    • Du, Z.1    Jin, X.2    Wu, L.3
  • 36
    • 63449107930 scopus 로고    scopus 로고
    • Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network
    • Du Z, Jin X, Yang Y (2009). Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network. Applied Energy, 86: 1624–1631.
    • (2009) Applied Energ , vol.86 , pp. 1624-1631
    • Du, Z.1    Jin, X.2    Yang, Y.3
  • 37
    • 84892973876 scopus 로고    scopus 로고
    • Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
    • Du Z, Fan B, Chi J, Jin X (2014a). Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks. Energy and Buildings, 72: 157–166.
    • (2014) Energy and Building , vol.72 , pp. 157-166
    • Du, Z.1    Fan, B.2    Chi, J.3    Jin, X.4
  • 38
    • 84890305201 scopus 로고    scopus 로고
    • Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis
    • Du Z, Fan B, Jin X, Chi J (2014b). Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis. Building and Environment, 73: 1–11.
    • (2014) Building and Environmen , vol.73 , pp. 1-11
    • Du, Z.1    Fan, B.2    Jin, X.3    Chi, J.4
  • 40
    • 84971207890 scopus 로고    scopus 로고
    • US Energy Information Administration, Washington, DC
    • EIA (2011). Annual Energy Review. Washington, DC: US Energy Information Administration.
    • (2011) Annual Energy Revie
  • 42
    • 84874897710 scopus 로고    scopus 로고
    • A review of computational optimisation methods applied to sustainable building design
    • Evins R (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22: 230–245.
    • (2013) Renewable and Sustainable Energy Review , vol.22 , pp. 230-245
    • Evins, R.1
  • 43
    • 77955425678 scopus 로고    scopus 로고
    • A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis
    • Fan B, Du Z, Jin X, Yang X, Guo Y (2010). A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis. Building and Environment, 45: 2698–2708.
    • (2010) Building and Environmen , vol.45 , pp. 2698-2708
    • Fan, B.1    Du, Z.2    Jin, X.3    Yang, X.4    Guo, Y.5
  • 45
    • 84870577828 scopus 로고    scopus 로고
    • Neural networks based predictive control for thermal comfort and energy savings in public buildings
    • Ferreira P, Ruano A, Silva S, Conceição EZE (2012). Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy and Buildings, 55: 238–251.
    • (2012) Energy and Building , vol.55 , pp. 238-251
    • Ferreira, P.1    Ruano, A.2    Silva, S.3    Conceição, E.Z.E.4
  • 46
    • 29144439156 scopus 로고    scopus 로고
    • HVAC system optimization for energy management by evolutionary programming
    • Fong K, Hanby V, Chow T (2006). HVAC system optimization for energy management by evolutionary programming. Energy and Buildings, 38: 220–231.
    • (2006) Energy and Building , vol.38 , pp. 220-231
    • Fong, K.1    Hanby, V.2    Chow, T.3
  • 47
    • 64749095040 scopus 로고    scopus 로고
    • System optimization for HVAC energy management using the robust evolutionary algorithm
    • Fong K, Hanby V, Chow T (2009). System optimization for HVAC energy management using the robust evolutionary algorithm. Applied Thermal Engineering, 29: 2327–2334.
    • (2009) Applied Thermal Engineerin , vol.29 , pp. 2327-2334
    • Fong, K.1    Hanby, V.2    Chow, T.3
  • 48
    • 0035400782 scopus 로고    scopus 로고
    • Fuzzy model and control of a fan-coil
    • Ghiaus C (2001). Fuzzy model and control of a fan-coil. Energy and Buildings, 33: 545–551.
    • (2001) Energy and Building , vol.33 , pp. 545-551
    • Ghiaus, C.1
  • 50
    • 0002808418 scopus 로고
    • Exploratory factor analysis
    • Nesselroade JR, Cattell RB, (eds), Springer, New York
    • Gorsuch R (1988). Exploratory factor analysis. In: Nesselroade JR, Cattell RB (eds), Handbook of Multivariate Experimental Psychology. New York: Springer, pp. 231–258.
    • (1988) Handbook of Multivariate Experimental Psycholog , pp. 231-258
    • Gorsuch, R.1
  • 53
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M, Menhaj MB (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5: 989–993.
    • (1994) IEEE Transactions on Neural Network , vol.5 , pp. 989-993
    • Hagan, M.M.M.1
  • 60
    • 84861801850 scopus 로고    scopus 로고
    • Gradient auto-tuned Takagisugeno fuzzy forward control of a HVAC system using predicted mean vote index
    • Homod RZ, Sahari KSM, Almurib HA, Nagi FH (2012). Gradient auto-tuned Takagisugeno fuzzy forward control of a HVAC system using predicted mean vote index. Energy and Buildings, 49: 254–267.
    • (2012) Energy and Building , vol.49 , pp. 254-267
    • Homod, R.Z.1    Sahari, K.S.M.2    Almurib, H.A.3    Nagi, F.H.4
  • 61
    • 0032677549 scopus 로고    scopus 로고
    • Classification techniques for fault detection and diagnosis of an air-handling unit
    • House JM, Lee WY, Shin DR (1999). Classification techniques for fault detection and diagnosis of an air-handling unit. ASHRAE Transactions, 105(2): 1087–1100.
    • (1999) ASHRAE Transaction , vol.105 , Issue.2 , pp. 1087-1100
    • House, J.M.1    Lee, W.Y.2    Shin, D.R.3
  • 62
    • 84865552225 scopus 로고    scopus 로고
    • Chiller sensor fault detection using a self-adaptive principal component analysis method
    • Hu Y, Chen H, Xie J, Yang X, Zhou C (2012). Chiller sensor fault detection using a self-adaptive principal component analysis method. Energy and Buildings, 54: 252–258.
    • (2012) Energy and Building , vol.54 , pp. 252-258
    • Hu, Y.1    Chen, H.2    Xie, J.3    Yang, X.4    Zhou, C.5
  • 67
    • 79957847210 scopus 로고    scopus 로고
    • Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system
    • Jahedi G, Ardehali M (2011). Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system. Energy Conversion and Management, 52: 725–732.
    • (2011) Energy Conversion and Managemen , vol.52 , pp. 725-732
    • Jahedi, G.1    Ardehali, M.2
  • 69
    • 68349091200 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Everitt BS, Howell D, (eds), John Wiley & Sons, Hoboken, NJ, USA
    • Jolliffe I (2005). Principal Component Analysis. In: Everitt BS, Howell D (eds), Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ, USA: John Wiley & Sons.
    • (2005) Encyclopedia of Statistics in Behavioral Scienc
    • Jolliffe, I.1
  • 70
    • 79960228121 scopus 로고    scopus 로고
    • A MAS integrated into home automation system, for the resolution of power management problem in smart homes
    • Joumaa H, Ploix S, Abras S, Oliveira GD (2011). A MAS integrated into home automation system, for the resolution of power management problem in smart homes. Energy Procedia, 6: 786–794.
    • (2011) Energy Procedi , vol.6 , pp. 786-794
    • Joumaa, H.1    Ploix, S.2    Abras, S.3    Oliveira, G.D.4
  • 71
    • 70449366533 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in energy applications in buildings
    • Kalogirou SA (2009). Artificial neural networks and genetic algorithms in energy applications in buildings. Advances in Building Energy Research, 3: 83–119.
    • (2009) Advances in Building Energy Researc , vol.3 , pp. 83-119
    • Kalogirou, S.A.1
  • 72
    • 0032165579 scopus 로고    scopus 로고
    • Multivariable control of single zone hydronic heating systems with neural networks
    • Kanarachos A, Geramanis K (1998). Multivariable control of single zone hydronic heating systems with neural networks. Energy Conversion and Management, 39: 1317–1336.
    • (1998) Energy Conversion and Managemen , vol.39 , pp. 1317-1336
    • Kanarachos, A.1    Geramanis, K.2
  • 74
    • 18944392642 scopus 로고    scopus 로고
    • Methods for fault detection, diagnostics, and prognostics for building systems: A review, part II
    • Katipamula S, Brambley MR (2005). Methods for fault detection, diagnostics, and prognostics for building systems: A review, part II. HVAC&R Research, 11: 169–187.
    • (2005) HVAC&R Researc , vol.11 , pp. 169-187
    • Katipamula, S.1    Brambley, M.R.2
  • 78
    • 0017220289 scopus 로고
    • TRNSYS—A transient simulation and program
    • Klein S, Duffie J, Beckman W (1976). TRNSYS—A transient simulation and program. ASHRAE Transactions, 82(1): 623–633.
    • (1976) ASHRAE Transaction , vol.82 , Issue.1 , pp. 623-633
    • Klein, S.1    Duffie, J.2    Beckman, W.3
  • 79
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen T (1998). The self-organizing map. Neurocomputing, 21: 1–6.
    • (1998) Neurocomputin , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 80
    • 84919863784 scopus 로고    scopus 로고
    • Artificial intelligence in buildings: A review of the application of fuzzy logic
    • Kolokotsa D (2007). Artificial intelligence in buildings: A review of the application of fuzzy logic. Advances in Building Energy Research, 1: 29–54.
    • (2007) Advances in Building Energy Researc , vol.1 , pp. 29-54
    • Kolokotsa, D.1
  • 85
    • 80053442034 scopus 로고    scopus 로고
    • Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm
    • Kusiak A, Xu G, Tang F (2011). Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm. Energy, 36: 5935–5943.
    • (2011) Energ , vol.36 , pp. 5935-5943
    • Kusiak, A.1    Xu, G.2    Tang, F.3
  • 87
    • 70350614410 scopus 로고    scopus 로고
    • Conflict resolution in multi-agent based intelligent environments
    • Lee J (2010). Conflict resolution in multi-agent based intelligent environments. Building and Environment, 45: 574–585.
    • (2010) Building and Environmen , vol.45 , pp. 574-585
    • Lee, J.1
  • 88
    • 84865572597 scopus 로고    scopus 로고
    • A simulation–optimization approach for energy efficiency of chilled water system
    • Lee K-P, Cheng T-A (2012). A simulation–optimization approach for energy efficiency of chilled water system. Energy and Buildings, 54: 290–296.
    • (2012) Energy and Building , vol.54 , pp. 290-296
    • Lee, K.-P.1    Cheng, T.-A.2
  • 89
    • 0029721827 scopus 로고    scopus 로고
    • Fault diagnosis of an air-handling unit using artificial neural networks
    • Lee W, House JM, Park C, Kelly GE (1996). Fault diagnosis of an air-handling unit using artificial neural networks. ASHRAE Transactions, 102(1): 540–549.
    • (1996) ASHRAE Transaction , vol.102 , Issue.1 , pp. 540-549
    • Lee, W.1    House, J.M.2    Park, C.3    Kelly, G.E.4
  • 90
    • 63449111486 scopus 로고    scopus 로고
    • Optimization for ice-storage air-conditioning system using particle swarm algorithm
    • Lee W-S, Chen Y-T, Wu T-H (2009). Optimization for ice-storage air-conditioning system using particle swarm algorithm. Applied Energy, 86: 1589–1595.
    • (2009) Applied Energ , vol.86 , pp. 1589-1595
    • Lee, W.-S.1    Chen, Y.-T.2    Wu, T.-H.3
  • 91
    • 0030687760 scopus 로고    scopus 로고
    • Fault diagnosis and temperature sensor recovery for an air-handling unit
    • Lee WY, House JM, Shin DR (1997). Fault diagnosis and temperature sensor recovery for an air-handling unit. ASHRAE Transactions, 103(1): 621–633.
    • (1997) ASHRAE Transaction , vol.103 , Issue.1 , pp. 621-633
    • Lee, W.Y.1    House, J.M.2    Shin, D.R.3
  • 92
    • 0242317861 scopus 로고    scopus 로고
    • Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks
    • Lee W-Y, House JM, Kyong N-H (2004). Subsystem level fault diagnosis of a building’s air-handling unit using general regression neural networks. Applied Energy, 77: 153–170.
    • (2004) Applied Energ , vol.77 , pp. 153-170
    • Lee, W.-Y.1    House, J.M.2    Kyong, N.-H.3
  • 93
    • 84897426200 scopus 로고    scopus 로고
    • Application of pattern matching method for detecting faults in air handling unit system
    • Li S, Wen J (2014). Application of pattern matching method for detecting faults in air handling unit system. Automation in Construction, 43: 49–58.
    • (2014) Automation in Constructio , vol.43 , pp. 49-58
    • Li, S.1    Wen, J.2
  • 94
    • 0029712805 scopus 로고    scopus 로고
    • Development of a fault diagnosis method for heating systems using neural networks
    • Li X, Visier J, Vaezi-Nejad H (1996). Development of a fault diagnosis method for heating systems using neural networks. ASHRAE Transactions, 102(1): 607–614.
    • (1996) ASHRAE Transaction , vol.102 , Issue.1 , pp. 607-614
    • Li, X.1    Visier, J.2    Vaezi-Nejad, H.3
  • 95
    • 0030677250 scopus 로고    scopus 로고
    • A neural network prototype for fault detection and dianosis of heating system
    • Li X, Visier J, Vaezi-Nejad H (1997). A neural network prototype for fault detection and dianosis of heating system. ASHRAE Transactions, 103(1): 634–644.
    • (1997) ASHRAE Transaction , vol.103 , Issue.1 , pp. 634-644
    • Li, X.1    Visier, J.2    Vaezi-Nejad, H.3
  • 96
    • 46449086044 scopus 로고    scopus 로고
    • Thermal comfort control based on neural network for HVAC application
    • Liang J, Du R (2005). Thermal comfort control based on neural network for HVAC application. In: Proceedings IEEE Conference on Control Applications, pp. 819–824.
    • (2005) Proceedings IEEE Conference on Control Application , pp. 819-824
    • Liang, J.1    Du, R.2
  • 100
  • 101
    • 77957302403 scopus 로고    scopus 로고
    • Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm
    • Ma Z, Wang S (2011). Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm. Applied Energy, 88: 198–211.
    • (2011) Applied Energ , vol.88 , pp. 198-211
    • Ma, Z.1    Wang, S.2
  • 104
    • 84892462836 scopus 로고    scopus 로고
    • Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building
    • Marvuglia A, Messineo A, Nicolosi G (2014). Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building. Building and Environment, 72: 287–299.
    • (2014) Building and Environmen , vol.72 , pp. 287-299
    • Marvuglia, A.1    Messineo, A.2    Nicolosi, G.3
  • 105
    • 84971294475 scopus 로고    scopus 로고
    • Mathworks (2012). Matlab Program. Mathworks.
    • (2012) Matlab Progra
  • 108
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • Meireles M, Almeida P, Simoes M (2003). A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Industrial Electronics, 50: 585–601.
    • (2003) IEEE Transactions on Industrial Electronic , vol.50 , pp. 585-601
    • Meireles, M.1    Almeida, P.2    Simoes, M.3
  • 111
    • 84876917233 scopus 로고    scopus 로고
    • Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump
    • Mokhtar M, Stables M, Liu X, Howe J (2013). Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump. Energy and Buildings, 62: 615–626.
    • (2013) Energy and Building , vol.62 , pp. 615-626
    • Mokhtar, M.1    Stables, M.2    Liu, X.3    Howe, J.4
  • 113
    • 79960898040 scopus 로고    scopus 로고
    • Comparative study of artificial intelligence-based building thermal control methods— Application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network
    • Moon JW, Jung SK, Kim Y, Han S-H (2011). Comparative study of artificial intelligence-based building thermal control methods— Application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network. Applied Thermal Engineering, 31: 2422–2429.
    • (2011) Applied Thermal Engineerin , vol.31 , pp. 2422-2429
    • Moon, J.W.1    Jung, S.K.2    Kim, Y.3    Han, S.-H.4
  • 114
    • 84872956981 scopus 로고    scopus 로고
    • Development of an artificial neural network model based thermal control logic for double skin envelopes in winter
    • Moon JW, Yoon S-H, Kim S (2013). Development of an artificial neural network model based thermal control logic for double skin envelopes in winter. Building and Environment, 61: 149–159.
    • (2013) Building and Environmen , vol.61 , pp. 149-159
    • Moon, J.W.1    Yoon, S.-H.2    Kim, S.3
  • 116
    • 57449101464 scopus 로고    scopus 로고
    • Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm
    • Mossolly M, Ghali K, Ghaddar N (2009). Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy, 34: 58–66.
    • (2009) Energ , vol.34 , pp. 58-66
    • Mossolly, M.1    Ghali, K.2    Ghaddar, N.3
  • 118
    • 34248642157 scopus 로고    scopus 로고
    • Integrating building energy simulation in the design process
    • Mourshed M, Kelliher D, Keane M (2003). Integrating building energy simulation in the design process. IBPSA News, 13(1): 21–26.
    • (2003) IBPSA New , vol.13 , Issue.1 , pp. 21-26
    • Mourshed, M.1    Kelliher, D.2    Keane, M.3
  • 119
    • 80053593583 scopus 로고    scopus 로고
    • Phi-array: A novel method for fitness visualization and decision making in evolutionary design optimization
    • Mourshed M, Shikder S, Price AD (2011). Phi-array: A novel method for fitness visualization and decision making in evolutionary design optimization. Advanced Engineering Informatics, 25: 676–687.
    • (2011) Advanced Engineering Informatic , vol.25 , pp. 676-687
    • Mourshed, M.1    Shikder, S.2    Price, A.D.3
  • 120
    • 84861687249 scopus 로고    scopus 로고
    • Application of machine learning in the fault diagnostics of air handling units
    • Najafi M, Auslander DM, Bartlett PL, Haves P, Sohn MD (2012). Application of machine learning in the fault diagnostics of air handling units. Applied Energy, 96: 347–358.
    • (2012) Applied Energ , vol.96 , pp. 347-358
    • Najafi, M.1    Auslander, D.M.2    Bartlett, P.L.3    Haves, P.4    Sohn, M.D.5
  • 121
    • 84872046239 scopus 로고    scopus 로고
    • Modeling and optimization of HVAC systems using artificial intelligence approaches
    • Nassif N (2012). Modeling and optimization of HVAC systems using artificial intelligence approaches. ASHRAE Transactions, 118(2): 133–140.
    • (2012) ASHRAE Transaction , vol.118 , Issue.2 , pp. 133-140
    • Nassif, N.1
  • 122
    • 21344438127 scopus 로고    scopus 로고
    • Optimization of HVAC control system strategy using two-objective genetic algorithm
    • Nassif N, Kajl S, Sabourin R (2005). Optimization of HVAC control system strategy using two-objective genetic algorithm. HVAC&R Research, 11: 459–486.
    • (2005) HVAC&R Researc , vol.11 , pp. 459-486
    • Nassif, N.1    Kajl, S.2    Sabourin, R.3
  • 123
    • 84855236801 scopus 로고    scopus 로고
    • Use of genetic algorithms and evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil—comparison of the AFLC with a standard PID controller
    • Navale RL, Nelson RM (2012). Use of genetic algorithms and evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil—comparison of the AFLC with a standard PID controller. Energy and Buildings, 45: 169–180.
    • (2012) Energy and Building , vol.45 , pp. 169-180
    • Navale, R.L.1    Nelson, R.M.2
  • 125
    • 75049084260 scopus 로고    scopus 로고
    • Neuro-optimal operation of a variable air volume HVAC&R system
    • Ning M, Zaheeruddin M (2010). Neuro-optimal operation of a variable air volume HVAC&R system. Applied Thermal Engineering, 30: 385–399.
    • (2010) Applied Thermal Engineerin , vol.30 , pp. 385-399
    • Ning, M.1    Zaheeruddin, M.2
  • 126
    • 60749123936 scopus 로고    scopus 로고
    • Optimal design method for building energy systems using genetic algorithms
    • Ooka R, Komamura K (2009). Optimal design method for building energy systems using genetic algorithms. Building and Environment, 44: 1538–1544.
    • (2009) Building and Environmen , vol.44 , pp. 1538-1544
    • Ooka, R.1    Komamura, K.2
  • 128
    • 77949300135 scopus 로고    scopus 로고
    • Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm
    • Parameshwaran R, Karunakaran R, Kumar CVR, Iniyan S (2010). Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm. Energy and Buildings, 42: 745–762.
    • (2010) Energy and Building , vol.42 , pp. 745-762
    • Parameshwaran, R.1    Karunakaran, R.2    Kumar, C.V.R.3    Iniyan, S.4
  • 129
    • 0029721619 scopus 로고    scopus 로고
    • Application of black-box models to HVAC systems for fault detection
    • Peitsman HC, Bakker V (1996). Application of black-box models to HVAC systems for fault detection. ASHRAE Transactions, 102(1): 628–640.
    • (1996) ASHRAE Transaction , vol.102 , Issue.1 , pp. 628-640
    • Peitsman, H.C.1    Bakker, V.2
  • 130
    • 0030653667 scopus 로고    scopus 로고
    • Arx models and real-time modelbased diagnosis
    • Peitsman HC, Soethout L (1997). Arx models and real-time modelbased diagnosis. ASHRAE Transactions, 103(1): 657–671.
    • (1997) ASHRAE Transaction , vol.103 , Issue.1 , pp. 657-671
    • Peitsman, H.C.1    Soethout, L.2
  • 131
    • 37349028760 scopus 로고    scopus 로고
    • A review on buildings energy consumption information
    • Pérez-Lombard L, Ortiz J, Pout C (2008). A review on buildings energy consumption information. Energy and Buildings, 40: 394–398.
    • (2008) Energy and Building , vol.40 , pp. 394-398
    • Pérez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 132
    • 33846295972 scopus 로고    scopus 로고
    • Active control of high rise building structures using fuzzy logic and genetic algorithms
    • Pourzeynali S, Lavasani H, Modarayi A (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29: 346–357.
    • (2007) Engineering Structure , vol.29 , pp. 346-357
    • Pourzeynali, S.1    Lavasani, H.2    Modarayi, A.3
  • 133
    • 84896520961 scopus 로고    scopus 로고
    • Using multiobjective optimizations to discover dynamic building ventilation strategies that can improve indoor air quality and reduce energy use
    • Rackes A, Waring MS (2014). Using multiobjective optimizations to discover dynamic building ventilation strategies that can improve indoor air quality and reduce energy use. Energy and Buildings, 75: 272–280.
    • (2014) Energy and Building , vol.75 , pp. 272-280
    • Rackes, A.1    Waring, M.S.2
  • 137
    • 84864131135 scopus 로고    scopus 로고
    • Thermal design of airconditioned building for tropical climate using admittance method and genetic algorithm
    • Sahu M, Bhattacharjee B, Kaushik SC (2012). Thermal design of airconditioned building for tropical climate using admittance method and genetic algorithm. Energy and Buildings, 53: 1–6.
    • (2012) Energy and Building , vol.53 , pp. 1-6
    • Sahu, M.1    Bhattacharjee, B.2    Kaushik, S.C.3
  • 138
    • 84896950976 scopus 로고    scopus 로고
    • Optimization of the HVAC system design to minimize primary energy demand
    • Seo J, Ooka R, Kim JT, Nam Y (2014). Optimization of the HVAC system design to minimize primary energy demand. Energy and Buildings, 76: 102–108.
    • (2014) Energy and Building , vol.76 , pp. 102-108
    • Seo, J.1    Ooka, R.2    Kim, J.T.3    Nam, Y.4
  • 140
    • 0037242421 scopus 로고    scopus 로고
    • Fuzzy control strategies to provide cost and energy efficient high quality indoor environments in buildings with high occupant densities
    • Shepherd AB, Batty WJ (2003). Fuzzy control strategies to provide cost and energy efficient high quality indoor environments in buildings with high occupant densities. Building Services Engineering Research and Technology, 24: 35–45.
    • (2003) Building Services Engineering Research and Technolog , vol.24 , pp. 35-45
    • Shepherd, A.B.1    Batty, W.J.2
  • 144
    • 70449528494 scopus 로고    scopus 로고
    • Fuzzy adaptive control for the actuators position control and modeling of an expert system
    • Soyguder S, Alli H (2010). Fuzzy adaptive control for the actuators position control and modeling of an expert system. Expert Systems with Applications, 37: 2072–2080.
    • (2010) Expert Systems with Application , vol.37 , pp. 2072-2080
    • Soyguder, S.1    Alli, H.2
  • 146
    • 0033063152 scopus 로고    scopus 로고
    • Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems
    • Symans MD, Kelly SW (1999). Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems. Earthquake Engineering and Structural Dynamics, 28: 37–60.
    • (1999) Earthquake Engineering and Structural Dynamic , vol.28 , pp. 37-60
    • Symans, M.D.1    Kelly, S.W.2
  • 147
    • 84870055990 scopus 로고    scopus 로고
    • Literature review regarding ant colony optimization applied to scheduling problems: Guide lines for implementation and directions for future research
    • Tavares Neto RF, Godinho Filho M (2013). Literature review regarding ant colony optimization applied to scheduling problems: Guide lines for implementation and directions for future research. Engineering Applications of Artificial Intelligence, 26: 150–161.
    • (2013) Engineering Applications of Artificial Intelligenc , vol.26 , pp. 150-161
    • Tavares Neto, R.F.1    Godinho Filho, M.2
  • 149
    • 77957814555 scopus 로고    scopus 로고
    • Experimental study on a duty ratio fuzzy control method for fan-coil units
    • Tianyi Z, Jili Z, Dexing S (2011). Experimental study on a duty ratio fuzzy control method for fan-coil units. Building and Environment, 46: 527–534.
    • (2011) Building and Environmen , vol.46 , pp. 527-534
    • Tianyi, Z.1    Jili, Z.2    Dexing, S.3
  • 150
    • 84971355368 scopus 로고    scopus 로고
    • Intelligent control of HVAC systems. Part I: Modeling and synthesis
    • Ursu I, Nastase I, Caluianu S, Iftene A, Toader A (2013). Intelligent control of HVAC systems. Part I: Modeling and synthesis. INCAS Bulletin, 5(1): 103–118.
    • (2013) INCAS Bulleti , vol.5 , Issue.1 , pp. 103-118
    • Ursu, I.1    Nastase, I.2    Caluianu, S.3    Iftene, A.4    Toader, A.5
  • 152
    • 84857060939 scopus 로고    scopus 로고
    • Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation
    • Congradac V, Kulic F (2012). Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy and Buildings, 47: 651–658.
    • (2012) Energy and Building , vol.47 , pp. 651-658
    • Congradac, V.1    Kulic, F.2
  • 153
    • 84896337128 scopus 로고    scopus 로고
    • Performance based analysis between k–Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data
    • Velmurugan V (2014). Performance based analysis between k–Means and Fuzzy C-Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19: 134–146.
    • (2014) Applied Soft Computin , vol.19 , pp. 134-146
    • Velmurugan, V.1
  • 155
    • 0036639541 scopus 로고    scopus 로고
    • Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural network
    • Wang S, Chen Y (2002). Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural network. Building and Environment, 37: 691–704.
    • (2002) Building and Environmen , vol.37 , pp. 691-704
    • Wang, S.1    Chen, Y.2
  • 156
    • 22144480628 scopus 로고    scopus 로고
    • Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
    • Wang S, Cui J (2005). Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method. Applied Energy, 82: 197–213.
    • (2005) Applied Energ , vol.82 , pp. 197-213
    • Wang, S.1    Cui, J.2
  • 157
    • 0034106064 scopus 로고    scopus 로고
    • Model-based optimal control of VAV airconditioning system using genetic algorithm
    • Wang S, Jin X (2000). Model-based optimal control of VAV airconditioning system using genetic algorithm. Building and Environment, 35: 471–487.
    • (2000) Building and Environmen , vol.35 , pp. 471-487
    • Wang, S.1    Jin, X.2
  • 158
    • 17744381355 scopus 로고    scopus 로고
    • Sensor fault detection and validation of VAV terminals in air conditioning systems
    • Wang S, Qin J (2005). Sensor fault detection and validation of VAV terminals in air conditioning systems. Energy Conversion and Management, 46: 2482–2500.
    • (2005) Energy Conversion and Managemen , vol.46 , pp. 2482-2500
    • Wang, S.1    Qin, J.2
  • 159
    • 0348230735 scopus 로고    scopus 로고
    • AHU sensor fault diagnosis using principal component analysis method
    • Wang S, Xiao F (2004a). AHU sensor fault diagnosis using principal component analysis method. Energy and Buildings, 36: 147–160.
    • (2004) Energy and Building , vol.36 , pp. 147-160
    • Wang, S.1    Xiao, F.2
  • 160
    • 2942670365 scopus 로고    scopus 로고
    • Detection and diagnosis of AHU sensor faults using principal component analysis method
    • Wang S, Xiao F (2004b). Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Conversion and Management, 45: 2667–2686.
    • (2004) Energy Conversion and Managemen , vol.45 , pp. 2667-2686
    • Wang, S.1    Xiao, F.2
  • 161
    • 77649238075 scopus 로고    scopus 로고
    • A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults
    • Wang S, Zhou Q, Xiao F (2010). A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy and Buildings, 42: 477–490.
    • (2010) Energy and Building , vol.42 , pp. 477-490
    • Wang, S.1    Zhou, Q.2    Xiao, F.3
  • 163
    • 84864795204 scopus 로고    scopus 로고
    • Multi-agent control system with information fusion based comfort model for smart buildings
    • Wang Z, Wang L, Dounis AI, Yang R (2012). Multi-agent control system with information fusion based comfort model for smart buildings. Applied Energy, 99: 247–254.
    • (2012) Applied Energ , vol.99 , pp. 247-254
    • Wang, Z.1    Wang, L.2    Dounis, A.I.3    Yang, R.4
  • 167
    • 0036787142 scopus 로고    scopus 로고
    • Optimization of building thermal design and control by multi-criterion genetic algorithm
    • Wright JA, Loosemore HA, Farmani R (2002). Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy and Buildings, 34: 959–972.
    • (2002) Energy and Building , vol.34 , pp. 959-972
    • Wright, J.A.1    Loosemore, H.A.2    Farmani, R.3
  • 169
    • 84898015943 scopus 로고    scopus 로고
    • Bayesian network based FDD strategy for variable air volume terminals
    • Xiao F, Zhao Y, Wen J, Wang S (2014). Bayesian network based FDD strategy for variable air volume terminals. Automation in Construction, 41: 106–118.
    • (2014) Automation in Constructio , vol.41 , pp. 106-118
    • Xiao, F.1    Zhao, Y.2    Wen, J.3    Wang, S.4
  • 170
    • 81855178279 scopus 로고    scopus 로고
    • Intelligent fault inference for rotating flexible rotors using Bayesian belief network
    • Xu BG (2012). Intelligent fault inference for rotating flexible rotors using Bayesian belief network. Expert Systems with Applications, 39: 816–822.
    • (2012) Expert Systems with Application , vol.39 , pp. 816-822
    • Xu, B.G.1
  • 173
    • 84897888316 scopus 로고    scopus 로고
    • High throughput computing based distributed genetic algorithm for building energy consumption optimization
    • Yang C, Li H, Rezgui Y, Petri I, Yuce B, Chen B, Jayan B (2014). High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76: 92–101.
    • (2014) Energy and Building , vol.76 , pp. 92-101
    • Yang, C.1    Li, H.2    Rezgui, Y.3    Petri, I.4    Yuce, B.5    Chen, B.6    Jayan, B.7
  • 174
    • 25844500264 scopus 로고    scopus 로고
    • On-line building energy prediction using adaptive artificial neural networks
    • Yang J, Rivard H, Zmeureanu R (2005). On-line building energy prediction using adaptive artificial neural networks. Energy and Buildings, 37: 1250–1259.
    • (2005) Energy and Building , vol.37 , pp. 1250-1259
    • Yang, J.1    Rivard, H.2    Zmeureanu, R.3
  • 177
    • 84855864872 scopus 로고    scopus 로고
    • Multi-objective optimization for decisionmaking of energy and comfort management in building automation and control
    • Yang R, Wang L (2012b). Multi-objective optimization for decisionmaking of energy and comfort management in building automation and control. Sustainable Cities and Society, 2: 1–7.
    • (2012) Sustainable Cities and Societ , vol.2 , pp. 1-7
    • Yang, R.1    Wang, L.2
  • 178
    • 84870720213 scopus 로고    scopus 로고
    • Development of multi-agent system for building energy and comfort management based on occupant behaviors
    • Yang Y, Wang L (2013). Development of multi-agent system for building energy and comfort management based on occupant behaviors. Energy and Buildings, 56: 1–7.
    • (2013) Energy and Building , vol.56 , pp. 1-7
    • Yang, Y.1    Wang, L.2
  • 181
    • 84902140819 scopus 로고    scopus 로고
    • Utilizing artificial neural network to predict energy consumption and thermal comfort level: An indoor swimming pool case study
    • Yuce B, Li H, Rezgui Y, Petri I, Jayan B, Yang C (2014). Utilizing artificial neural network to predict energy consumption and thermal comfort level: An indoor swimming pool case study. Energy and Buildings, 80: 45–56.
    • (2014) Energy and Building , vol.80 , pp. 45-56
    • Yuce, B.1    Li, H.2    Rezgui, Y.3    Petri, I.4    Jayan, B.5    Yang, C.6
  • 182
    • 84930627756 scopus 로고    scopus 로고
    • Unsupervised feature selection using swarm intelligence and consensus clustering for automatic fault detection and diagnosis in heating ventilation and air conditioning systems
    • Yuwono M, Guo Y, Wall J, Li J, West S, Platt G, Su SW (2015). Unsupervised feature selection using swarm intelligence and consensus clustering for automatic fault detection and diagnosis in heating ventilation and air conditioning systems. Applied Soft Computing, 34: 402–425.
    • (2015) Applied Soft Computin , vol.34 , pp. 402-425
    • Yuwono, M.1    Guo, Y.2    Wall, J.3    Li, J.4    West, S.5    Platt, G.6    Su, S.W.7
  • 184
    • 33749402364 scopus 로고    scopus 로고
    • Energy aspects of HVAC system configurations—Problem definition and test cases
    • Zhang Y, Wright J, Hanby V (2006). Energy aspects of HVAC system configurations—Problem definition and test cases. HVAC&R Research, 12: 871–888.
    • (2006) HVAC&R Researc , vol.12 , pp. 871-888
    • Zhang, Y.1    Wright, J.2    Hanby, V.3
  • 185
    • 84872585742 scopus 로고    scopus 로고
    • An energy management system for building structures using a multi-agent decisionmaking control methodology
    • Zhao Z, Suryanarayanan S, Simoes M (2013a). An energy management system for building structures using a multi-agent decisionmaking control methodology. IEEE Transactions on Industry Applications, 49: 322–330.
    • (2013) IEEE Transactions on Industry Application , vol.49 , pp. 322-330
    • Zhao, Z.1    Suryanarayanan, S.2    Simoes, M.3
  • 186
    • 84871745484 scopus 로고    scopus 로고
    • An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network
    • Zhao Y, Xiao F, Wang S (2013b). An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network. Energy and Buildings, 57: 278–288.
    • (2013) Energy and Building , vol.57 , pp. 278-288
    • Zhao, Y.1    Xiao, F.2    Wang, S.3
  • 188
  • 190
    • 57849122452 scopus 로고    scopus 로고
    • Optimization of ventilation system design and operation in office environment, Part I: Methodology
    • Zhou L, Haghighat F (2009). Optimization of ventilation system design and operation in office environment, Part I: Methodology. Building and Environment, 44: 651–656.
    • (2009) Building and Environmen , vol.44 , pp. 651-656
    • Zhou, L.1    Haghighat, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.