-
1
-
-
84865014320
-
Guessing secrecy
-
Springer-Verlag, August
-
M. Alimomeni, and R. Safavi-Naini, "Guessing secrecy, " Proc. of the 6th International Conference on Information Theoretic Security (ICITS 2012), LNCS7412, Springer-Verlag, pp. 1-13, August 2012.
-
(2012)
Proc. of the 6th International Conference on Information Theoretic Security (ICITS 2012), LNCS7412
, pp. 1-13
-
-
Alimomeni, M.1
Safavi-Naini, R.2
-
2
-
-
0029732887
-
An inequality on guessing and its application to sequential decoding
-
E. Arikan, "An inequality on guessing and its application to sequential decoding, " IEEE Trans. Information Theory, vol. 42, no. 1, pp. 99-105, 1996.
-
(1996)
IEEE Trans. Information Theory
, vol.42
, Issue.1
, pp. 99-105
-
-
Arikan, E.1
-
4
-
-
0004013982
-
Entropy measures and unconditional security in cryptography
-
Zürich, Switzerland
-
C. Cachin, "Entropy measures and unconditional security in cryptography", Swiss Federal Institute of Technology, Zürich, Switzerland, 1997.
-
(1997)
Swiss Federal Institute of Technology
-
-
Cachin, C.1
-
6
-
-
79957636296
-
Exponential decreasing rate of leaked information in universal random privacy amplification
-
M. Hayashi, "Exponential decreasing rate of leaked information in universal random privacy amplification, " IEEE Trans. Information Theory, vol. 57, no. 6, pp. 3989-4001, 2011.
-
(2011)
IEEE Trans. Information Theory
, vol.57
, Issue.6
, pp. 3989-4001
-
-
Hayashi, M.1
-
7
-
-
84958540075
-
Information theoretic security for encryption based on conditional Rényi entropies Revisiting conditional Rényi entropies and generalizing Shannon's bounds in information theoretically secure encryption
-
Springer, November 2013. The full version is entitled
-
M. Iwamoto, and J. Shikata, "Information theoretic security for encryption based on conditional Rényi entropies", Proc. of ICITS2013, LNCS 8317, pp. 103-121, Springer, November 2013. The full version is entitled "Revisiting conditional Rényi entropies and generalizing Shannon's bounds in information theoretically secure encryption", and available at http://eprint. iacr. org/2013/440
-
Proc. of ICITS2013, LNCS 8317
, pp. 103-121
-
-
Iwamoto, M.1
Shikata, J.2
-
8
-
-
3142672769
-
The world according to Rényi: Thermodynamics of multifractal systems
-
P. Jizba, and T. Arimitsu, "The world according to Rényi: Thermodynamics of multifractal systems", Annals of Physics, vol. 312, pp. 17-59, 2004.
-
(2004)
Annals of Physics
, vol.312
, pp. 17-59
-
-
Jizba, P.1
Arimitsu, T.2
-
9
-
-
3042858195
-
Generalized statistics: Yet another generalization
-
P. Jizba, and T. Arimitsu, "Generalized statistics: yet another generalization", Physica A, vol. 340, pp. 110-116, 2004.
-
(2004)
Physica A
, vol.340
, pp. 110-116
-
-
Jizba, P.1
Arimitsu, T.2
-
10
-
-
0037321619
-
A large-deviations notions of perfect secrecy
-
N. Merhav, "A large-deviations notions of perfect secrecy, " IEEE Trans. Information Theory, vol. 30, no. 2, pp. 506-508, 2003.
-
(2003)
IEEE Trans. Information Theory
, vol.30
, Issue.2
, pp. 506-508
-
-
Merhav, N.1
-
11
-
-
33646767482
-
Simple and tight bounds for information reconciliation and privacy amplification
-
Springer
-
R. Renner, and S. Wolf, "Simple and tight bounds for information reconciliation and privacy amplification", Advances in Cryptology-ASIACRYPT2005, LNCS 4515, pp. 199-216, Springer, 2005.
-
(2005)
Advances in Cryptology-ASIACRYPT2005, LNCS 4515
, pp. 199-216
-
-
Renner, R.1
Wolf, S.2
-
13
-
-
84890522850
-
Communication theory of secrecy systems
-
Oct.
-
C. E. Shannon, "Communication theory of secrecy systems, " Bell Tech. J., vol. 28, pp. 656-715, Oct. 1949.
-
(1949)
Bell Tech. J.
, vol.28
, pp. 656-715
-
-
Shannon, C.E.1
-
14
-
-
0000478763
-
Cipher printing telegraph systems for secret wire and radio telegraphic communications
-
G. S. Vernam, "Cipher printing telegraph systems for secret wire and radio telegraphic communications, " J. of American Institute for Electrical Engineering, vol. 45, pp. 109-115, 1926.
-
(1926)
J. of American Institute for Electrical Engineering
, vol.45
, pp. 109-115
-
-
Vernam, G.S.1
|