-
2
-
-
33645896486
-
Uber die Unanwendbarkeit der Geometrie im Kleinen
-
E. Schrödinger, “Uber die Unanwendbarkeit der Geometrie im Kleinen,” Naturwiss. 31 (1934) 342-344.
-
(1934)
Naturwiss
, vol.31
, pp. 342-344
-
-
Schrödinger, E.1
-
3
-
-
0038863546
-
Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie
-
W. Heisenberg, “Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie,” Z. Phys.110(1938) 251-266.
-
(1938)
Z. Phys
, vol.110
, pp. 251-266
-
-
Heisenberg, W.1
-
4
-
-
33744664346
-
Zur Theorie des Diamagnetismus von Leitungselektronen
-
R. Peierls, “Zur Theorie des Diamagnetismus von Leitungselektronen,” Z. Phys.80(1933) 763.
-
(1933)
Z. Phys
, vol.80
, pp. 763
-
-
Peierls, R.1
-
5
-
-
34347406191
-
Quantized space-time
-
H. S. Snyder, “Quantized space-time,” Phys. Rev. 71(1947) 38-41.
-
(1947)
Phys. Rev
, vol.71
, pp. 38-41
-
-
Snyder, H.S.1
-
6
-
-
33750947757
-
The quantum structure of space-time at the Planck scale and quantum fields
-
S. Doplicher, K. Fredenhagen and J. E. Roberts, “The quantum structure of space-time at the Planck scale and quantum fields,” Commun. Math. Phys.172(1995) 187-220.
-
(1995)
Commun. Math. Phys
, vol.172
, pp. 187-220
-
-
Doplicher, S.1
Fredenhagen, K.2
Roberts, J.E.3
-
14
-
-
0030359659
-
Gravity coupled with matter and the foundation of noncommutative geometry
-
C. Connes, “Gravity coupled with matter and the foundation of noncommutative geometry,” Commun. Math. Phys.182(1996) 155-176.
-
(1996)
Commun. Math. Phys
, vol.182
, pp. 155-176
-
-
Connes, C.1
-
15
-
-
33745040449
-
On the principles of elementary quantum mechanics
-
H. J. Groenewold, “On the principles of elementary quantum mechanics,” Physica 12 (1946) 405-460.
-
(1946)
Physica
, vol.12
, pp. 405-460
-
-
Groenewold, H.J.1
-
16
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc.45(1949) 99-124.
-
(1949)
Proc. Cambridge Phil. S
, vol.45
, pp. 99-124
-
-
Moyal, J.E.1
-
18
-
-
2442626689
-
Moyal planes are spectral triples
-
V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker and J. C. Varilly, “Moyal planes are spectral triples,” Commun. Math. Phys. 246 (2004) 569-623.
-
(2004)
Commun. Math. Phys
, vol.246
, pp. 569-623
-
-
Gayral, V.1
Gracia-Bondia, J.M.2
Iochum, B.3
Schücker, T.4
Varilly, J.C.5
-
19
-
-
36549090874
-
Algebras of distributions suitable for phase space quantum mechanics. I
-
J. M. Gracia-Bondia and J. C. Varilly, “Algebras of distributions suitable for phase space quantum mechanics. I,” J. Math. Phys.29(1988) 869-879.
-
(1988)
J. Math. Phys
, vol.29
, pp. 869-879
-
-
Gracia-Bondia, J.M.1
Varilly, J.C.2
-
20
-
-
33745014742
-
On the quantum correction for thermodynamic equilibrium
-
E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev.40(1932) 749-760.
-
(1932)
Phys. Rev
, vol.40
, pp. 749-760
-
-
Wigner, E.P.1
-
21
-
-
33744769996
-
Deformation theory and quantization. I. Deformations of symplectic structures
-
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures,” Ann. Phys.111(1978) 61-110.
-
(1978)
Ann. Phys.
, vol.111
, pp. 61-110
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
22
-
-
34948832288
-
Deformation theory and quantization. II. Physical applications
-
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer “Deformation theory and quantization. II. Physical applications,” Ann. Phys. 111(1978) 111-151.
-
(1978)
Ann. Phys
, vol.111
, pp. 111-151
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
24
-
-
0034349089
-
A path integral approach to the Kontsevich quantization formula
-
S. Cattaneo and G. Felder, “A path integral approach to the Kontsevich quantization formula,” Commun. Math. Phys. 212(2000) 591-611.
-
(2000)
Commun. Math. Phys
, vol.212
, pp. 591-611
-
-
Cattaneo, S.1
Felder, G.2
-
25
-
-
0003085097
-
Poisson structure induced (Topological) field theories
-
P. Schaller and T. Strobl, “Poisson structure induced (topological) field theories,” Mod. Phys. Lett. A 9(1994) 3129-3136.
-
(1994)
Mod. Phys. Lett
, vol.9
, pp. 3129-3136
-
-
Schaller, P.1
Strobl, T.2
-
26
-
-
3242672684
-
Non-commutative heat kernel
-
D. V. Vassilevich, “Non-commutative heat kernel,” Lett. Math. Phys.67(2004) 185-194.
-
(2004)
Lett. Math. Phys
, vol.67
, pp. 185-194
-
-
Vassilevich, D.V.1
-
27
-
-
17444364853
-
The spectral action for Moyal planes
-
V. Gayral and B. Iochum, “The spectral action for Moyal planes,” J. Math. Phys. 46 (2005) 043-503.
-
(2005)
J. Math. Phys
, vol.46
, pp. 043-503
-
-
Gayral, V.1
Iochum, B.2
-
29
-
-
84867382198
-
-
JHEP
-
J. M. Gracia-Bondia, F. Lizzi, G. Marmo, and P. Vitale, “Infinitely many star products to play with,” JHEP04(2002) 026.
-
(2002)
Infinitely many star products to play with
, vol.4
, pp. 026
-
-
Gracia-Bondia, J.M.1
Lizzi, F.2
Marmo, G.3
Vitale, P.4
-
31
-
-
84958736867
-
The exact transition probabilities of quantum-mechanical oscillators calculated by the phase-space method
-
M. S. Bartlett and J. E. Moyal, “The exact transition probabilities of quantum-mechanical oscillators calculated by the phase-space method,” Proc. Cambridge Phil. Soc.45(1949) 545-553.
-
(1949)
Proc. Cambridge Phil. Soc
, vol.45
, pp. 545-553
-
-
Bartlett, M.S.1
Moyal, J.E.2
-
32
-
-
0037474583
-
Interacting fermions on noncommutative spaces: Exactly solvable quantum field theories in 2n + 1 dimensions
-
E. Langmann, “Interacting fermions on noncommutative spaces: Exactly solvable quantum field theories in 2n + 1 dimensions,”Nucl. Phys. B 654(2003) 404-426.
-
(2003)
Nucl. Phys
, vol.654
, pp. 404-426
-
-
Langmann, E.1
-
33
-
-
0041821520
-
Exact solution of noncommutative field theory in background magnetic fields
-
E. Langmann, R. J. Szabo and K. Zarembo, “Exact solution of noncommutative field theory in background magnetic fields,” Phys. Lett. B 569(2003) 95-101.
-
(2003)
Phys. Lett
, vol.569
, pp. 95-101
-
-
Langmann, E.1
Szabo, R.J.2
Zarembo, K.3
-
34
-
-
23144462213
-
-
JHEP, hep-th/0308043
-
E. Langmann, R. J. Szabo and K. Zarembo, “Exact solution of quantum field theory on noncommutative phase spaces,” JHEP 01 (2004) 017, hep-th/0308043.
-
(2004)
Exact Solution of Quantum Field Theory on Noncommutative Phase Spaces
, vol.1
, pp. 017
-
-
Langmann, E.1
Szabo, R.J.2
Zarembo, K.3
-
35
-
-
36549100229
-
Algebras of distributions suitable for phase space quantum mechanics. II. Topologies on the Moyal algebra
-
J. C. Varilly and J. M. Gracia-Bondia, “Algebras of distributions suitable for phase space quantum mechanics. II. Topologies on the Moyal algebra,” J. Math. Phys.29(1988) 880-887.
-
(1988)
J. Math. Phys
, vol.29
, pp. 880-887
-
-
Varilly, J.C.1
Gracia-Bondia, J.M.2
-
36
-
-
0001245856
-
C* algebres et geometrie différentielle
-
C. Connes, “C* algebres et geometrie différentielle,” C. R. Acad. Sci. Paris Sér. A-B 290(1980) 599-604.
-
(1980)
C. R. Acad. Sci. Paris Sér
, vol.290
, pp. 599-604
-
-
Connes, C.1
-
37
-
-
84972491035
-
C*-algebras associated with irrational rotations
-
M. A. Rieffel, “C*-algebras associated with irrational rotations,” Pacific J. Math.93(1981) 415-429.
-
(1981)
Pacific J. Math
, vol.93
, pp. 415-429
-
-
Rieffel, M.A.1
-
38
-
-
0001343595
-
Noncommutative tori—a case study of noncommutative differentiable manifolds
-
M. A. Rieffel, “Noncommutative tori—a case study of noncommutative differentiable manifolds,” Contemp. Math.105(1990) 191-211.
-
(1990)
Contemp. Math
, vol.105
, pp. 191-211
-
-
Rieffel, M.A.1
-
39
-
-
0000595944
-
Noncommutative manifolds: The instanton algebra and isospectral deformations
-
C. Connes and G. Landi, “Noncommutative manifolds: The instanton algebra and isospectral deformations,” Commun. Math. Phys. 221(2001)141-159.
-
(2001)
Commun. Math. Phys
, vol.221
, pp. 141-159
-
-
Connes, C.1
Landi, G.2
-
40
-
-
0036026977
-
Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples
-
C. Connes and M. Dubois-Violette, “Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples,” Commun. Math. Phys. 230(2002) 539-579.
-
(2002)
Commun. Math. Phys
, vol.230
, pp. 539-579
-
-
Connes, C.1
Dubois-Violette, M.2
-
42
-
-
1342288905
-
Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance
-
M. A. Rieffel, “Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance,”Mem. Amer. Math. Soc. 168(2004) 67-91.
-
(2004)
Mem. Amer. Math. Soc
, vol.168
, pp. 67-91
-
-
Rieffel, M.A.1
-
43
-
-
0042708469
-
Noncommutative geometry and the regularization problem of 4D quantum field theory
-
H. Grosse and A. Strohmaier, “Noncommutative geometry and the regularization problem of 4D quantum field theory,” Lett. Math. Phys.48(1999)163-179.
-
(1999)
Lett. Math. Phys
, vol.48
, pp. 163-179
-
-
Grosse, H.1
Strohmaier, A.2
-
45
-
-
0001588032
-
I,” J. Geom. Phys
-
q-deformed fuzzy sphere
-
H. Grosse, J. Madore, and H. Steinacker, “Field theory on the q-deformed fuzzy sphere. I,” J. Geom. Phys. 38 (2001) 308-342.
-
(2001)
38
, pp. 308-342
-
-
Grosse, H.1
Madore, J.2
Steinacker, H.3
-
46
-
-
0036335337
-
Quantization,” J. Geom. Phys
-
q-deformed fuzzy sphere. II
-
H. Grosse, J. Madore and H. Steinacker, “Field theory on the q-deformed fuzzy sphere. II: Quantization,” J. Geom. Phys. 43 (2002) 205-240.
-
(2002)
43
, pp. 205-240
-
-
Grosse, H.1
Madore, J.2
Steinacker, H.3
-
51
-
-
4243656358
-
The twisted Eguchi-Kawai model: A reduced model for large N lattice gauge theory
-
A. Gonzalez-Arroyo and M. Okawa, “The twisted Eguchi-Kawai model: A reduced model for large N lattice gauge theory,” Phys. Rev. D 27 (1983) 2397.
-
(1983)
Phys. Rev
, vol.27
, pp. 2397
-
-
Gonzalez-Arroyo, A.1
Okawa, M.2
-
52
-
-
33744614976
-
Some twisted selfdual solutions for the Yang-Mills equations on a hypertorus
-
G. t. Hooft, “Some twisted selfdual solutions for the Yang-Mills equations on a hypertorus,” Commun. Math. Phys. 81 (1981) 267-275.
-
(1981)
Commun. Math. Phys
, vol.81
, pp. 267-275
-
-
Hooft, G.T.1
-
53
-
-
4244172432
-
Reduced model for large N continuum field theories
-
A. Gonzalez-Arroyo and C. P. Korthals Altes, “Reduced model for large N continuum field theories,” Phys. Lett. B131(1983) 396.
-
(1983)
Phys. Lett
, vol.131
, pp. 396
-
-
Gonzalez-Arroyo, A.1
Korthals Altes, C.P.2
-
54
-
-
2442504712
-
The action functional for Moyal planes
-
V. Gayral, “The action functional for Moyal planes,” Lett. Math. Phys.65(2003) 147-157.
-
(2003)
Lett. Math. Phys
, vol.65
, pp. 147-157
-
-
Gayral, V.1
-
55
-
-
0542393957
-
Renormalization of gauge theories
-
C. Becchi, A. Rouet, and R. Stora, “Renormalization of gauge theories,” Ann. Phys.98(1976) 287-321.
-
(1976)
Ann. Phys
, vol.98
, pp. 287-321
-
-
Becchi, C.1
Rouet, A.2
Stora, R.3
-
56
-
-
33744741883
-
Gauge algebra and quantization
-
I. A. Batalin and G. A. Vilkovisky, “Gauge algebra and quantization,” Phys. Lett. B102(1981) 27-31.
-
(1981)
Phys. Lett
, vol.102
, pp. 27-31
-
-
Batalin, I.A.1
Vilkovisky, G.A.2
-
57
-
-
0037007565
-
Duality in scalar field theory on noncommutative phase spaces
-
E. Langmann and R. J. Szabo, “Duality in scalar field theory on noncommutative phase spaces,” Phys. Lett. B 533(2002) 168-177.
-
(2002)
Phys. Lett
, vol.533
, pp. 168-177
-
-
Langmann, E.1
Szabo, R.J.2
-
58
-
-
0040240370
-
Towards finite quantum field theory in noncommutative geometry
-
H. Grosse, C. Klimcik and P. Presnajder, “Towards finite quantum field theory in noncommutative geometry,”Int. J. Theor. Phys. 35(1996)231-244.
-
(1996)
Int. J. Theor. Phys
, vol.35
, pp. 231-244
-
-
Grosse, H.1
Klimcik, C.2
Presnajder, P.3
-
59
-
-
0001129349
-
On finite 4D quantum field theory in noncommutative geometry
-
H. Grosse, C. KlimGk, and P. Presnajder, “On finite 4D quantum field theory in noncommutative geometry,” Commun. Math. Phys.180(1996)429-438.
-
(1996)
Commun. Math. Phys
, vol.180
, pp. 429-438
-
-
Grosse, H.1
Klimgk, C.2
Presnajder, P.3
-
60
-
-
0141960174
-
-
PhD thesis, Syracuse University, Syracuse, hep-th/0110006
-
B. Ydri, Fuzzy physics. PhD thesis, Syracuse University, Syracuse, 2001. hep-th/0110006.
-
(2001)
Fuzzy Physics
-
-
Ydri, B.1
-
61
-
-
33745021425
-
Scaling limits of the fuzzy sphere at one loop
-
C.-S. Chu, J. Madore, and H. Steinacker, “Scaling limits of the fuzzy sphere at one loop,” JHEP08(2001) 038.
-
(2001)
JHEP
, vol.8
, pp. 038
-
-
Chu, C.-S.1
Madore, J.2
Steinacker, H.3
-
63
-
-
0000718004
-
Noncommutative gauge theory on fuzzy sphere from matrix model
-
S. Iso, Y. Kimura, K. Tanaka, and K. Wakatsuki, “Noncommutative gauge theory on fuzzy sphere from matrix model,” Nucl. Phys. B 604(2001)121-147.
-
(2001)
Nucl. Phys
, vol.604
, pp. 121-147
-
-
Iso, S.1
Kimura, Y.2
Tanaka, K.3
Wakatsuki, K.4
-
64
-
-
0347753324
-
Quantized gauge theory on the fuzzy sphere as random matrix model
-
H. Steinacker, “Quantized gauge theory on the fuzzy sphere as random matrix model,” Nucl. Phys. B 679(2004) 66-98.
-
(2004)
Nucl. Phys
, vol.679
, pp. 66-98
-
-
Steinacker, H.1
-
65
-
-
0040362505
-
Finite field theory on noncommutative geometries
-
S. Cho, R. Hinterding, J. Madore and H. Steinacker, “Finite field theory on noncommutative geometries,” Int. J. Mod. Phys. D 9(2000) 161-199.
-
(2000)
Int. J. Mod. Phys
, vol.9
, pp. 161-199
-
-
Cho, S.1
Hinterding, R.2
Madore, J.3
Steinacker, H.4
-
66
-
-
0037972649
-
Ultraviolet finite quantum field theory on quantum spacetime
-
D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli, “Ultraviolet finite quantum field theory on quantum spacetime,” Commun. Math. Phys.237(2003) 221-241.
-
(2003)
Commun. Math. Phys
, vol.237
, pp. 221-241
-
-
Bahns, D.1
Doplicher, S.2
Fredenhagen, K.3
Piacitelli, G.4
-
68
-
-
84969686033
-
-
1975, D. Reidel Publishing, Dordrecht
-
G. Velo and A. S. Wightman, eds., Renormalization Theory, Proc. Erice1975. D. Reidel Publishing, Dordrecht, 1976.
-
(1976)
Renormalization Theory, Proc. Erice
-
-
Velo, G.1
Wightman, A.S.2
-
70
-
-
4243473139
-
Divergencies in a field theory on quantum space
-
T. Filk, “Divergencies in a field theory on quantum space,” Phys. Lett. B 376(1996) 53-58.
-
(1996)
Phys. Lett
, vol.376
, pp. 53-58
-
-
Filk, T.1
-
71
-
-
0000907877
-
On the ultraviolet behaviour of quantum fields over noncommutative manifolds
-
J. C. Varilly and J. M. Gracia-Bondia, “On the ultraviolet behaviour of quantum fields over noncommutative manifolds,” Int. J. Mod. Phys. A 14 (1999) 1305.
-
(1999)
Int. J. Mod. Phys
, vol.14
, pp. 1305
-
-
Varilly, J.C.1
Gracia-Bondia, J.M.2
-
72
-
-
0034645836
-
Quantum field theory on noncommutative space-times and the persistence of ultraviolet divergences
-
M. Chaichian, A. Demichev and P. PreSnajder, “Quantum field theory on noncommutative space-times and the persistence of ultraviolet divergences,” Nucl. Phys. B 567(2000) 360-390.
-
(2000)
Nucl. Phys
, vol.567
, pp. 360-390
-
-
Chaichian, M.1
Demichev, A.2
Presnajder, P.3
-
74
-
-
0007318007
-
Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus
-
M. M. Sheikh-Jabbari, “Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus,” JHEP06(1999) 015.
-
(1999)
JHEP
, vol.6
, pp. 015
-
-
Sheikh-Jabbari, M.M.1
-
75
-
-
0034688975
-
Perturbative quantum gauge fields on the noncommutative torus
-
T. Krajewski and R. Wulkenhaar, “Perturbative quantum gauge fields on the noncommutative torus,”Int. J. Mod. Phys. A15(2000) 1011-1030.
-
(2000)
Int. J. Mod. Phys
, vol.15
, pp. 1011-1030
-
-
Krajewski, T.1
Wulkenhaar, R.2
-
77
-
-
0041524804
-
Noncommutative geometry and matrix theory: Compactification on tori
-
A. C. Connes, M. R. Douglas, and A. Schwarz, “Noncommutative geometry and matrix theory: Compactification on tori,” JHEP02(1998) 003.
-
(1998)
JHEP
, vol.2
, pp. 003
-
-
Connes, A.C.1
Douglas, M.R.2
Schwarz, A.3
-
78
-
-
0011292760
-
Two lectures on D-geometry and noncommutative geometry
-
M. Duff et al, World Scientific, Singapore
-
M. R. Douglas, “Two lectures on D-geometry and noncommutative geometry,” in Nonperturbative Aspects of Strings, Branes and Supersymmetry, M. Duff et al., eds., pp. 131-156. World Scientific, Singapore, 1999.
-
(1999)
Nonperturbative Aspects of Strings, Branes and Supersymmetry
, pp. 131-156
-
-
Douglas, M.R.1
-
80
-
-
0034676918
-
Noncommutative Yang-Mills in IIB matrix model
-
H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, “Noncommutative Yang-Mills in IIB matrix model,” Nucl. Phys. B 565(2000)176-192.
-
(2000)
Nucl. Phys
, vol.565
, pp. 176-192
-
-
Aoki, H.1
Ishibashi, N.2
Iso, S.3
Kawai, H.4
Kitazawa, Y.5
Tada, T.6
-
81
-
-
33645939244
-
Finite N matrix models of noncommutative gauge theory
-
J. Ambjprn, Y. M. Makeenko, J. Nishimura and R. J. Szabo, “Finite N matrix models of noncommutative gauge theory,” JHEP11(1999) 029.
-
(1999)
JHEP
, vol.11
, pp. 029
-
-
Ambjprn, J.1
Makeenko, Y.M.2
Nishimura, J.3
Szabo, R.J.4
-
82
-
-
23044490750
-
A non-perturbative study of gauge theory on a non-commutative plane
-
W. Bietenholz, F. Hofheinz and J. Nishimura, “A non-perturbative study of gauge theory on a non-commutative plane,” JHEP09(2002) 009.
-
(2002)
JHEP
, vol.9
, pp. 009
-
-
Bietenholz, W.1
Hofheinz, F.2
Nishimura, J.3
-
83
-
-
0038717738
-
Non-commutative field theories beyond perturbation theory, Fortsch. Phys
-
W. Bietenholz, F. Hofheinz and J. Nishimura, “Non-commutative field theories beyond perturbation theory,” Fortsch. Phys.51(2003) 745-752.
-
(2003)
51
, pp. 745-752
-
-
Bietenholz, W.1
Hofheinz, F.2
Nishimura, J.3
-
84
-
-
0035797173
-
Phase structure of non-commutative scalar field theories, Nucl. Phys. B
-
S. S. Gubser and S. L. Sondhi, “Phase structure of non-commutative scalar field theories,” Nucl. Phys. B605(2001) 395-424.
-
(2001)
605
, pp. 395-424
-
-
Gubser, S.S.1
Sondhi, S.L.2
-
85
-
-
0035529355
-
From large N matrices to the noncommutative torus
-
G. Landi, F. Lizzi, and R. J. Szabo, “From large N matrices to the noncommutative torus,” Commun. Math. Phys.217(2001) 181-201.
-
(2001)
Commun. Math. Phys
, vol.217
, pp. 181-201
-
-
Landi, G.1
Lizzi, F.2
Szabo, R.J.3
-
86
-
-
0346154816
-
A new matrix model for noncommutative field theory
-
G. Landi, F. Lizzi, and R. J. Szabo, “A new matrix model for noncommutative field theory,” Phys. Lett. B 578(2004) 449-458.
-
(2004)
Phys. Lett
, vol.578
, pp. 449-458
-
-
Landi, G.1
Lizzi, F.2
Szabo, R.J.3
-
87
-
-
79551553457
-
Matrix quantum mechanics and soliton regularization of noncommutative field theory
-
G. Landi, F. Lizzi, and R. J. Szabo, “Matrix quantum mechanics and soliton regularization of noncommutative field theory,” Adv. Theor. Math. Phys. 8(2004) 1-82.
-
(2004)
Adv. Theor. Math. Phys
, vol.8
, pp. 1-82
-
-
Landi, G.1
Lizzi, F.2
Szabo, R.J.3
-
89
-
-
0345734393
-
Instanton expansion of noncommutative gauge theory in two dimensions
-
L. D. Paniak and R. J. Szabo, “Instanton expansion of noncommutative gauge theory in two dimensions,” Commun. Math. Phys.243(2003)343-387.
-
(2003)
Commun. Math. Phys
, vol.243
, pp. 343-387
-
-
Paniak, L.D.1
Szabo, R.J.2
-
91
-
-
33645906285
-
D-branes and the noncommutative torus
-
M. R. Douglas and C. M. Hull, “D-branes and the noncommutative torus,” JHEP02(1998) 008.
-
(1998)
JHEP
, vol.2
, pp. 008
-
-
Douglas, M.R.1
Hull, C.M.2
-
92
-
-
0036179683
-
Introduction to M(Atrix) theory and noncommutative geometry
-
A. Konechny and A. Schwarz, “Introduction to M(atrix) theory and noncommutative geometry,” Phys. Rep. 360 (2002) 353-465 (Parts I and II).
-
(2002)
Phys. Rep
, vol.360
, pp. 353-465
-
-
Konechny, A.1
Schwarz, A.2
-
93
-
-
0036179683
-
Introduction to M(Atrix) theory and noncommutative geometry. II
-
A. Konechny and A. Schwarz, “Introduction to M(atrix) theory and noncommutative geometry. II,” Phys. Rep. 360 (2002) 353-465 (Parts I and II).
-
Phys. Rep
, vol.360
-
-
Konechny, A.1
Schwarz, A.2
-
95
-
-
0037402478
-
Quantum field theory on noncommutative spaces
-
R. J. Szabo, “Quantum field theory on noncommutative spaces,” Phys. Rep.378(2003) 207-299.
-
(2003)
Phys. Rep
, vol.378
, pp. 207-299
-
-
Szabo, R.J.1
-
96
-
-
84969699529
-
-
Particles and Fields, G. A. Alves, World Scientific, Singapore
-
I. Ya. Aref’eva, D. M. Belov, A. A. Giryavets, A. S. Koshelev and P. B. Medvedev, “Noncommutative field theories and (super)string field theories,” in Particles and Fields, G. A. Alves et al., eds., pp. 1-163. World Scientific, Singapore, 2001.
-
(2001)
Noncommutative Field Theories and (Super)String Field Theories
, pp. 1-163
-
-
Aref’Eva, I.Y.1
Belov, D.M.2
Giryavets, A.A.3
Koshelev, A.S.4
Medvedev, P.B.5
-
97
-
-
0001921965
-
Renormalization of quantum field theories on noncommutative Rd. I: Scalars
-
d. I: Scalars,” JHEP05(2000) 037.
-
(2000)
JHEP
, vol.5
, pp. 037
-
-
Chepelev, I.1
Roiban, R.2
-
98
-
-
33744928437
-
Convergence theorem for non-commutative Feynman graphs and renormalization
-
I. Chepelev and R. Roiban, “Convergence theorem for non-commutative Feynman graphs and renormalization,” JHEP03(2001) 001.
-
(2001)
JHEP
, vol.3
, pp. 001
-
-
Chepelev, I.1
Roiban, R.2
-
99
-
-
0034673510
-
Two-loop diagrams in noncommutative 4>4 theory
-
I. Ya. Aref’eva, D. M. Belov, and A. S. Koshelev, “Two-loop diagrams in noncommutative 4>4 theory,” Phys. Lett. B476(2000) 431-436.
-
(2000)
Phys. Lett
, vol.476
, pp. 431-436
-
-
Aref’Eva, I.Y.1
Belov, D.M.2
Koshelev, A.S.3
-
102
-
-
7544246718
-
The IR/UV connection in the non-commutative gauge theories
-
hep-th/0002075
-
A. Matusis, L. Susskind, and N. Toumbas, “The IR/UV connection in the non-commutative gauge theories,” JHEP 12 (2000) 002, hep-th/0002075.
-
(2000)
JHEP
, vol.12
, pp. 002
-
-
Matusis, A.1
Susskind, L.2
Toumbas, N.3
-
103
-
-
0002674808
-
Renormalization of noncommutative U(N) gauge theories
-
L. Bonora and M. Salizzoni, “Renormalization of noncommutative U(N) gauge theories,” Phys. Lett. B 504(2001) 80-88.
-
(2001)
Phys. Lett
, vol.504
, pp. 80-88
-
-
Bonora, L.1
Salizzoni, M.2
-
105
-
-
0001986792
-
Convergence theorems for renormalized Feynman integrals with zero-mass propagators
-
J. H. Lowenstein, “Convergence theorems for renormalized Feynman integrals with zero-mass propagators,” Commun. Math. Phys.47(1976) 53-68.
-
(1976)
Commun. Math. Phys
, vol.47
, pp. 53-68
-
-
Lowenstein, J.H.1
-
106
-
-
0001466639
-
Proof of the Bogolyubov-Parasiuk theorem on renormalization
-
K. Hepp, “Proof of the Bogolyubov-Parasiuk theorem on renormalization,” Commun. Math. Phys.2(1966) 301-326.
-
(1966)
Commun. Math. Phys
, vol.2
, pp. 301-326
-
-
Hepp, K.1
-
107
-
-
0037199130
-
Perturbative analysis of the Seiberg-Witten map
-
A. A. Bichl, J. M. Grimstrup, L. Popp, M. Schweda and R. Wulkenhaar, “Perturbative analysis of the Seiberg-Witten map,” Int. J. Mod. Phys. A17(2002) 2219-2232.
-
(2002)
Int. J. Mod. Phys
, vol.17
, pp. 2219-2232
-
-
Bichl, A.A.1
Grimstrup, J.M.2
Popp, L.3
Schweda, M.4
Wulkenhaar, R.5
-
108
-
-
84885604154
-
Non-renormalizability of ^-expanded noncommutative QED
-
R. Wulkenhaar, “Non-renormalizability of ^-expanded noncommutative QED,” JHEP 03 (2002) 024.
-
(2002)
JHEP
, vol.3
, pp. 024
-
-
Wulkenhaar, R.1
-
109
-
-
0036590812
-
Noncommutative Lorentz symmetry and the origin of the Seiberg-Witten map
-
A. A. Bichl, J. M. Grimstrup, H. Grosse, E. Kraus, L. Popp, M. Schweda and R. Wulkenhaar, “Noncommutative Lorentz symmetry and the origin of the Seiberg-Witten map,” Eur. Phys. J. C 24(2002) 165-176.
-
(2002)
Eur. Phys. J
, vol.24
, pp. 165-176
-
-
Bichl, A.A.1
Grimstrup, J.M.2
Grosse, H.3
Kraus, E.4
Popp, L.5
Schweda, M.6
Wulkenhaar, R.7
-
110
-
-
13744260964
-
Comments on gauge equivalence in noncommutative geometry
-
T. Asakawa and I. Kishimoto, “Comments on gauge equivalence in noncommutative geometry,” JHEP11(1999) 024.
-
(1999)
JHEP
, vol.11
, pp. 024
-
-
Asakawa, T.1
Kishimoto, I.2
-
111
-
-
0001627366
-
Non-commutative world-volume interactions on D-branes and Dirac-Born-Infeld action
-
M. R. Garousi, “Non-commutative world-volume interactions on D-branes and Dirac-Born-Infeld action,” Nucl. Phys. B579(2000) 209-228.
-
(2000)
Nucl. Phys
, vol.579
, pp. 209-228
-
-
Garousi, M.R.1
-
112
-
-
0000251126
-
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
-
B. Jurco, P. Schupp and J. Wess, “Nonabelian noncommutative gauge theory via noncommutative extra dimensions,” Nucl. Phys. B 604(2001)148-180.
-
(2001)
Nucl. Phys
, vol.604
, pp. 148-180
-
-
Jurco, B.1
Schupp, P.2
Wess, J.3
-
113
-
-
0040016284
-
Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces
-
B. Jurco, S. Schraml, P. Schupp and J. Wess, “Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces,” Eur. Phys. J. C 17(2000) 521-526.
-
(2000)
Eur. Phys. J
, vol.17
, pp. 521-526
-
-
Jurco, B.1
Schraml, S.2
Schupp, P.3
Wess, J.4
-
114
-
-
33744536042
-
Renormalization of the noncommutative photon selfenergy to all orders via Seiberg-Witten map
-
A. A. Bichl, J. M. Grimstrup, H. Grosse, L. Popp, M. Schweda and R. Wulkenhaar, “Renormalization of the noncommutative photon selfenergy to all orders via Seiberg-Witten map,” JHEP06(2001) 013.
-
(2001)
JHEP
, vol.6
, pp. 013
-
-
Bichl, A.A.1
Grimstrup, J.M.2
Grosse, H.3
Popp, L.4
Schweda, M.5
Wulkenhaar, R.6
-
115
-
-
0036877423
-
Quantisation of ^-expanded noncommutative QED
-
J. M. Grimstrup and R. Wulkenhaar, “Quantisation of ^-expanded noncommutative QED,” Eur. Phys. J. C 26(2002) 139-151.
-
(2002)
Eur. Phys. J
, vol.26
, pp. 139-151
-
-
Grimstrup, J.M.1
Wulkenhaar, R.2
-
116
-
-
50549165146
-
Change of variables and equivalence theorems in quantum field theories
-
S. Kamefuchi, L. O’Raifeartaigh and A. Salam, “Change of variables and equivalence theorems in quantum field theories,” Nucl. Phys.28(1961)529-549.
-
(1961)
Nucl. Phys
, vol.28
, pp. 529-549
-
-
Kamefuchi, S.1
O’Raifeartaigh, L.2
Salam, A.3
-
117
-
-
33751032568
-
The standard model on non-commutative space-time
-
X. Calmet, B. Jurco, P. Schupp, J. Wess and M. Wohlgenannt, “The standard model on non-commutative space-time,” Eur. Phys. J. C 23 (2002)363-376.
-
(2002)
Eur. Phys. J
, vol.23
, pp. 363-376
-
-
Calmet, X.1
Jurco, B.2
Schupp, P.3
Wess, J.4
Wohlgenannt, M.5
-
118
-
-
0041567072
-
The Z ^ 77, gg decays in the noncommutative standard model
-
W. Behr, N. G. Deshpande, G. Duplancic, P. Schupp, J. Trampetic and J. Wess, “The Z ^ 77, gg decays in the noncommutative standard model,” Eur. Phys. J. C 29(2003) 441-446.
-
(2003)
Eur. Phys. J
, vol.29
, pp. 441-446
-
-
Behr, W.1
Deshpande, N.G.2
Duplancic, G.3
Schupp, P.4
Trampetic, J.5
Wess, J.6
-
119
-
-
0038606340
-
Consistent noncommutative quantum gauge theories?
-
A. A. Slavnov, “Consistent noncommutative quantum gauge theories?,” Phys. Lett. B 565(2003) 246-252.
-
(2003)
Phys. Lett
, vol.565
, pp. 246-252
-
-
Slavnov, A.A.1
-
121
-
-
0037007553
-
On the unitar-ity problem in space/time noncommutative theories
-
D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli, “On the unitar-ity problem in space/time noncommutative theories,” Phys. Lett. B 533(2002) 178-181.
-
(2002)
Phys. Lett
, vol.533
, pp. 178-181
-
-
Bahns, D.1
Doplicher, S.2
Fredenhagen, K.3
Piacitelli, G.4
-
122
-
-
0005797073
-
Space-time noncommutative field theories and unitarity
-
J. Gomis and T. Mehen, “Space-time noncommutative field theories and unitarity,” Nucl. Phys. B 591(2000) 265-276.
-
(2000)
Nucl. Phys
, vol.591
, pp. 265-276
-
-
Gomis, J.1
Mehen, T.2
-
123
-
-
33744734375
-
Remarks on time-space noncommutative field theories
-
L. Alvarez-Gaume, J. L. F. Barbón and R. Zwicky, “Remarks on time-space noncommutative field theories,” JHEP05(2001) 057.
-
(2001)
JHEP
, vol.5
, pp. 057
-
-
Alvarez-Gaume, L.1
Barbón, J.L.F.2
Zwicky, R.3
-
124
-
-
0037124383
-
Hermitian analyticity, IR/UV mixing and unitarity of noncommutative field theories
-
C.-S. Chu, J. Lukierski and W. J. Zakrzewski, “Hermitian analyticity, IR/UV mixing and unitarity of noncommutative field theories,” Nucl. Phys. B 632(2002) 219-239.
-
(2002)
Nucl. Phys
, vol.632
, pp. 219-239
-
-
Chu, C.-S.1
Lukierski, J.2
Zakrzewski, W.J.3
-
125
-
-
0000587107
-
The S matrix in the Heisenberg representation
-
C.-N. Yang and D. Feldman, “The S matrix in the Heisenberg representation,” Phys. Rev.79(1950) 972-978.
-
(1950)
Phys. Rev
, vol.79
, pp. 972-978
-
-
Yang, C.-N.1
Feldman, D.2
-
126
-
-
0038379558
-
Unitary quantum field theory on the noncommutative Minkowski space
-
D. Bahns, “Unitary quantum field theory on the noncommutative Minkowski space,” Fortsch. Phys.51(2003) 658-663.
-
(2003)
Fortsch. Phys
, vol.51
, pp. 658-663
-
-
Bahns, D.1
-
127
-
-
0142089915
-
Unitarity in space-time noncommutative field theories
-
C.-h. Rim and J. H. Yee, “Unitarity in space-time noncommutative field theories,” Phys. Lett. B 574 (2003) 111-120, hep-th/0205193.
-
(2003)
Phys. Lett
, vol.574
, pp. 111-120
-
-
Rim, C.-H.1
Yee, J.H.2
-
128
-
-
0036825051
-
Time-ordered perturbation theory on noncommutative spacetime: Basic rules
-
Y. Liao and K. Sibold, “Time-ordered perturbation theory on noncommutative spacetime: Basic rules,” Eur. Phys. J. C 25(2002) 469-477.
-
(2002)
Eur. Phys. J
, vol.25
, pp. 469-477
-
-
Liao, Y.1
Sibold, K.2
-
129
-
-
0036824757
-
Time-ordered perturbation theory on noncommutative spacetime. II. Unitarity
-
Y. Liao and K. Sibold, “Time-ordered perturbation theory on noncommutative spacetime. II. Unitarity,” Eur. Phys. J. C 25(2002) 479-486.
-
(2002)
Eur. Phys. J
, vol.25
, pp. 479-486
-
-
Liao, Y.1
Sibold, K.2
-
130
-
-
0042155754
-
Space/time noncommutative field theories and causality
-
H. Bozkaya, P. Fischer, H. Grosse, M. Pitschmann, V. Putz, M. Schweda and R. Wulkenhaar, “Space/time noncommutative field theories and causality,” Eur. Phys. J. C 29(2003) 133-141.
-
(2003)
Eur. Phys. J
, vol.29
, pp. 133-141
-
-
Bozkaya, H.1
Fischer, P.2
Grosse, H.3
Pitschmann, M.4
Putz, V.5
Schweda, M.6
Wulkenhaar, R.7
-
131
-
-
23144439131
-
“Time ordered perturbation theory for non-local interactions: Applications to NCQFT,” JHEP
-
S. Denk and M. Schweda, “Time ordered perturbation theory for non-local interactions: Applications to NCQFT,” JHEP 09 (2003) 032.
-
(2003)
09
, pp. 032
-
-
Denk, S.1
Schweda, M.2
-
132
-
-
0345490626
-
Unitarity of time-like noncommutative gauge theories: The violation of Ward identities in time-ordered perturbation theory
-
T. Ohl, R. Rückl and J. Zeiner, “Unitarity of time-like noncommutative gauge theories: The violation of Ward identities in time-ordered perturbation theory,” Nucl. Phys. B 676(2004) 229-242.
-
(2004)
Nucl. Phys
, vol.676
, pp. 229-242
-
-
Ohl, T.1
Rückl, R.2
Zeiner, J.3
-
133
-
-
21844488725
-
Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories
-
A. C. Connes and C. Rovelli, “Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories,” Class. Quant. Grav.11(1994) 2899-2918.
-
(1994)
Class. Quant. Grav
, vol.11
, pp. 2899-2918
-
-
Connes, A.C.1
Rovelli, C.2
-
134
-
-
0031501256
-
Hamiltonian gravity and noncommutative geometry
-
E. Hawkins, “Hamiltonian gravity and noncommutative geometry,” Commun. Math. Phys.187(1997) 471-489.
-
(1997)
Commun. Math. Phys
, vol.187
, pp. 471-489
-
-
Hawkins, E.1
-
136
-
-
0035981886
-
A spectral quadruple for de Sitter space
-
T. Kopf and M. Paschke, “A spectral quadruple for de Sitter space,” J. Math. Phys.43(2002) 818-846.
-
(2002)
J. Math. Phys
, vol.43
, pp. 818-846
-
-
Kopf, T.1
Paschke, M.2
-
137
-
-
10844224609
-
Local covariant quantum field theory over spectral geometries
-
M. Paschke and R. Verch, “Local covariant quantum field theory over spectral geometries,” Class. Quant. Grav.21(2004) 5299-5316.
-
(2004)
Class. Quant. Grav
, vol.21
, pp. 5299-5316
-
-
Paschke, M.1
Verch, R.2
-
138
-
-
0001898814
-
The renormalization group and the epsilon expansion
-
K. G. Wilson and J. B. Kogut, “The renormalization group and the epsilon expansion,” Phys. Rep.12(1974) 75-200.
-
(1974)
Phys. Rep
, vol.12
, pp. 75-200
-
-
Wilson, K.G.1
Kogut, J.B.2
-
139
-
-
0009189528
-
Renormalization and effective Lagrangians
-
J. Polchinski, “Renormalization and effective Lagrangians,” Nucl. Phys. B 231(1984) 269-295.
-
(1984)
Nucl. Phys
, vol.231
, pp. 269-295
-
-
Polchinski, J.1
-
140
-
-
33744770055
-
Wilsonian renormalization group and the non-commutative IR/UV connection
-
L. Griguolo and M. Pietroni, “Wilsonian renormalization group and the non-commutative IR/UV connection,” JHEP05(2001) 032.
-
(2001)
JHEP
, vol.5
, pp. 032
-
-
Griguolo, L.1
Pietroni, M.2
-
141
-
-
23044491411
-
On the UV renormalizability of noncommutative field theories
-
S. Sarkar, “On the UV renormalizability of noncommutative field theories,” JHEP 06 (2002) 003.
-
(2002)
JHEP
, vol.6
, pp. 003
-
-
Sarkar, S.1
-
142
-
-
0037166683
-
The Wilson-Polchinski renormalization group equation in the planar limit
-
C. Becchi, S. Giusto and C. Imbimbo, “The Wilson-Polchinski renormalization group equation in the planar limit,” Nucl. Phys. B 633(2002)250-270.
-
(2002)
Nucl. Phys
, vol.633
, pp. 250-270
-
-
Becchi, C.1
Giusto, S.2
Imbimbo, C.3
-
143
-
-
0038779669
-
The renormalization of noncommutative field theories in the limit of large non-commutativity
-
C. Becchi, S. Giusto, and C. Imbimbo, “The renormalization of noncommutative field theories in the limit of large non-commutativity,” Nucl. Phys. B 664(2003) 371-399.
-
(2003)
Nucl. Phys
, vol.664
, pp. 371-399
-
-
Becchi, C.1
Giusto, S.2
Imbimbo, C.3
-
144
-
-
12944274897
-
Power-counting theorem for non-local matrix models and renormalisation
-
H. Grosse and R. Wulkenhaar, “Power-counting theorem for non-local matrix models and renormalisation,” Commun. Math. Phys.254(2005)91-127.
-
(2005)
Commun. Math. Phys
, vol.254
, pp. 91-127
-
-
Grosse, H.1
Wulkenhaar, R.2
|