메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 504-513

A divide and conquer framework for distributed graph clustering

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; COLLABORATIVE FILTERING; LEARNING SYSTEMS;

EID: 84969543450     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (29)
  • 1
    • 84897480570 scopus 로고    scopus 로고
    • Breaking the small cluster barrier of graph clustering
    • Ailon, N., Chen, Y., and Xu, H. Breaking the small cluster barrier of graph clustering. In ICML, 2013.
    • (2013) ICML
    • Ailon, N.1    Chen, Y.2    Xu, H.3
  • 2
    • 84921068187 scopus 로고    scopus 로고
    • Guaranteed clustering and bicluster-ing via semidefinite programming
    • Ames, Brendan P. W. Guaranteed clustering and bicluster-ing via semidefinite programming. Mathematical Programming, 143 (1-2): 429-465, 2014.
    • (2014) Mathematical Programming , vol.143 , Issue.1-2 , pp. 429-465
    • Ames, P.B.W.1
  • 3
    • 80052581489 scopus 로고    scopus 로고
    • Nuclear norm minimization for the planted clique and biclique problems
    • September
    • Ames, Brendan P. W. and Vavasis, Stephen A. Nuclear norm minimization for the planted clique and biclique problems. Mathematical Programming, 129 (1): 69-89, September 2011.
    • (2011) Mathematical Programming , vol.129 , Issue.1 , pp. 69-89
    • Ames, B.P.W.1    Vavasis, S.A.2
  • 4
    • 84895057352 scopus 로고    scopus 로고
    • Convex optimization for the planted k-disjoint-clique problem
    • Ames, Brendan P. W. and Vavasis, Stephen A. Convex optimization for the planted k-disjoint-clique problem. Mathematical Programming, 143 (1-2): 299-337, 2014.
    • (2014) Mathematical Programming , vol.143 , Issue.1-2 , pp. 299-337
    • Ames, B.P.W.1    Vavasis, S.A.2
  • 5
    • 84919829528 scopus 로고    scopus 로고
    • Spectral clustering of graphs with general degrees in the extended planted partition model
    • Chaudhuri, K., Graham, F. C, and Tsiatas, A. Spectral clustering of graphs with general degrees in the extended planted partition model. In COLT, 2012.
    • (2012) COLT
    • Chaudhuri, K.1    Graham, F.C.2    Tsiatas, A.3
  • 7
    • 84919791993 scopus 로고    scopus 로고
    • Weighted graph clustering with non-uniform uncertainties
    • Chen, Y, Lim, S. H. and Xu, H. Weighted graph clustering with non-uniform uncertainties. In ICML, 2014a.
    • (2014) ICML
    • Chen, Y.1    Lim, S.H.2    Xu, H.3
  • 9
    • 0035580899 scopus 로고    scopus 로고
    • Algorithms for graph partitioning on the planted partition model
    • Condon, A. and Karp, R. Algorithms for graph partitioning on the planted partition model. Random Structures Algorithms, 18 (2): 116-140, 2001.
    • (2001) Random Structures Algorithms , vol.18 , Issue.2 , pp. 116-140
    • Condon, A.1    Karp, R.2
  • 10
    • 29244453931 scopus 로고    scopus 로고
    • On the Nystrom method for approximating a gram matrix for improved kernel-based learning
    • Drineas, P. and Mahoney, M. W. On the Nystrom method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6: 2153-2175, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 12
    • 26844454563 scopus 로고    scopus 로고
    • Reconstructing many partitions using spectral techniques
    • Giesen, J. and Mitsche, D. Reconstructing many partitions using spectral techniques. Fundamentals of Computation Theory, PP- 433-444, 2005.
    • (2005) Fundamentals of Computation Theory , pp. 433-444
    • Giesen, J.1    Mitsche, D.2
  • 14
    • 79951736796 scopus 로고    scopus 로고
    • Sub-space clustering meets dense subgraph mining: A synthesis of two paradigms
    • Giinnemann, S., Farber, I., Boden, B., and Seidl, T. Sub-space clustering meets dense subgraph mining: A synthesis of two paradigms. In ICDM, 2010.
    • (2010) ICDM
    • Giinnemann, S.1    Farber, I.2    Boden, B.3    Seidl, T.4
  • 15
    • 0012864758 scopus 로고
    • Stochastic block-models: Some first steps
    • Holland, P., Laskey, K., and Leinhardt, S. Stochastic block-models: Some first steps. Social Networks, 5: 109-137, 1983.
    • (1983) Social Networks , vol.5 , pp. 109-137
    • Holland, P.1    Laskey, K.2    Leinhardt, S.3
  • 16
    • 80053437868 scopus 로고    scopus 로고
    • Clustering partially observed graphs via convex optimization
    • Jalali, A., Chen, Y, Sanghavi, S., and Xu, H. Clustering partially observed graphs via convex optimization. In ICML, 2011.
    • (2011) ICML
    • Jalali, A.1    Chen, Y.2    Sanghavi, S.3    Xu, H.4
  • 17
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis, G. and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20 (1): 359-392, 1998a.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 20
    • 84896060960 scopus 로고    scopus 로고
    • Large-scale spectral clustering on graphs
    • Liu, J., Wang, C, Danilevsky, M., and Han, J. Large-scale spectral clustering on graphs. In IJCAI, 2013.
    • (2013) IJCAI
    • Liu, J.1    Wang, C.2    Danilevsky, M.3    Han, J.4
  • 21
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg, U. A tutorial on spectral clustering. Statistics and Computing, 17 (4): 395-116, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 22
    • 80052767847 scopus 로고    scopus 로고
    • Scalable discovery of best clusters on large graphs
    • Macropol, K. and Singh, A. Scalable discovery of best clusters on large graphs. Proceedings of the VLDB Endowment, 3 (1-2): 693-702, 2010.
    • (2010) Proceedings of the VLDB Endowment , vol.3 , Issue.1-2 , pp. 693-702
    • Macropol, K.1    Singh, A.2
  • 23
    • 84921070105 scopus 로고    scopus 로고
    • Finding dense clusters via "low rank + sparse" decomposition
    • Oymak, S. and Hassibi, B. Finding dense clusters via "low rank + sparse" decomposition. Arxiv preprint, 2011.
    • (2011) Arxiv Preprint
    • Oymak, S.1    Hassibi, B.2
  • 24
    • 80052860256 scopus 로고    scopus 로고
    • Spectral clustering and the high-dimensional stochastic blockmodel
    • Rohe, Karl, Chatterjee, Sourav, and Yu, Bin. Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39 (4): 1878-1915, 08 2011.
    • (2008) The Annals of Statistics , vol.39 , Issue.4 , pp. 1878-1915
    • Karl, R.1    Sourav, C.2    Bin, Y.3
  • 25
    • 36849026706 scopus 로고    scopus 로고
    • Improved algorithms for the random cluster graph model
    • Shamir, R. and Tsur, D. Improved algorithms for the random cluster graph model. Random Structures Algorithms, 31 (4): 418-149, 2007.
    • (2007) Random Structures Algorithms , vol.31 , Issue.4 , pp. 418-449
    • Shamir, R.1    Tsur, D.2
  • 26
    • 0002663098 scopus 로고
    • Slink: An optimally efficient algorithm for the single-link cluster method
    • Sibson, R. Slink: an optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16 (1): 30-34, 1973.
    • (1973) The Computer Journal , vol.16 , Issue.1 , pp. 30-34
    • Sibson, R.1
  • 27
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts, D. J. and Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature, 393 (6684): 409-10, 1998
    • (1998) Nature , vol.393 , Issue.6684 , pp. 409-410
    • Watts, D.J.1    Strogatz, S.H.2
  • 28
    • 84874102343 scopus 로고    scopus 로고
    • Scalable and memory-efficient clustering of large-scale social networks
    • Whang, J. J., Sui, X., and Dhillon, I. S. Scalable and memory-efficient clustering of large-scale social networks. InICDM, 2012.
    • (2012) ICDM
    • Whang, J.J.1    Sui, X.2    Dhillon, I.S.3
  • 29
    • 70350657266 scopus 로고    scopus 로고
    • Fast approximate spectral clustering
    • Yan, D., Huang, L., and Jordan, M. I. Fast approximate spectral clustering. In KDD, pp. 907-916, 2009.
    • (2009) KDD , pp. 907-916
    • Yan, D.1    Huang, L.2    Jordan, M.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.