-
1
-
-
81155150371
-
Incremental proximal methods for large scale convex optimization
-
Bertsekas, D. P. Incremental proximal methods for large scale convex optimization. Mathematical Programming, Ser.B, 129: 163-195, 2011.
-
(2011)
Mathematical Programming, Ser.B
, vol.129
, pp. 163-195
-
-
Bertsekas, D.P.1
-
2
-
-
39449100600
-
A convergent incremental gradient method with a constant step size
-
Blatt, D., Hero, A. O., and Gauchman, H. A convergent incremental gradient method with a constant step size, S1AM Journal on Optimization, 18 (1): 29-51, 2007.
-
(2007)
S1AM Journal on Optimization
, vol.18
, Issue.1
, pp. 29-51
-
-
Blatt, D.1
Hero, A.O.2
Gauchman, H.3
-
3
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Lechevallier, Y. and Saporta, G. (eds.), Paris, France, August, Springer
-
Bottou, L. Large-scale machine learning with stochastic gradient descent. In Lechevallier, Y. and Saporta, G. (eds.), Proceedings of the 19th International Conference on Computational Statistics, pp. 177-187, Paris, France, August 2010. Springer.
-
(2010)
Proceedings of the 19th International Conference on Computational Statistics
, pp. 177-187
-
-
Bottou, L.1
-
5
-
-
79953201848
-
A first-order primal-dual algorithm for convex problems with applications to imaging
-
Chambolle, A. and Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40 (1): 120-145, 2011.
-
(2011)
Journal of Mathematical Imaging and Vision
, vol.40
, Issue.1
, pp. 120-145
-
-
Chambolle, A.1
Pock, T.2
-
6
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
Duchi, J. and Singer, Y. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10: 2873-2898, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2873-2898
-
-
Duchi, J.1
Singer, Y.2
-
8
-
-
0003684449
-
-
Springer, New York, 2nd edition
-
Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, 2nd edition, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S., and Sundararajan, S. A dual coordinate descent method for large-scale linear svm. In Proceedings of the 25th International Conference on Machine Learning (ICML), pp. 408-415, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning (ICML)
, pp. 408-415
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.4
Sundararajan, S.5
-
11
-
-
64149115569
-
Sparse online learning via truncated gradient
-
Langford, J., Li, L., and Zhang, T. Sparse online learning via truncated gradient. Journal of Machine Learning Research, 10: 777-801, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
12
-
-
84937832340
-
An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization
-
Microsoft Research
-
Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94, Microsoft Research, 2014.
-
(2014)
Technical Report MSR-TR-2014-94
-
-
Lin, Q.1
Lu, Z.2
Xiao, L.3
-
13
-
-
0036342213
-
Incremental subgradient methods for nondifferentiable optimization
-
Nedic, A. and Bertsekas, D. P. Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 12 (1): 109-138, 2001.
-
(2001)
SIAM Journal on Optimization
, vol.12
, Issue.1
, pp. 109-138
-
-
Nedic, A.1
Bertsekas, D.P.2
-
14
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19 (4): 1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
16
-
-
17444406259
-
Smooth minimization of nonsmooth functions
-
Nesterov, Y. Smooth minimization of nonsmooth functions. Mathematical Programming, 103: 127-152, 2005.
-
(2005)
Mathematical Programming
, vol.103
, pp. 127-152
-
-
Nesterov, Y.1
-
17
-
-
84879800501
-
Gradient methods for minimizing composite functions
-
Nesterov, Y. Gradient methods for minimizing composite functions. Mathematical Programming, Ser. B, 140: 125-161, 2013.
-
(2013)
Mathematical Programming, Ser. B
, vol.140
, pp. 125-161
-
-
Nesterov, Y.1
-
20
-
-
84872514178
-
A stochastic gradient method with an exponential convergence rate for finite training sets
-
Roux, N. L., Schmidt, M., and Bach, F. A stochastic gradient method with an exponential convergence rate for finite training sets. In Advances in Neural Information Processing Systems 25, pp. 2672-2680. 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2672-2680
-
-
Roux, N.L.1
Schmidt, M.2
Bach, F.3
-
21
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss minimization
-
Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14: 567-599, 2013a.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
24
-
-
0032222083
-
An incremental gradient (-projection) method with momentum term and adaptive stepsiz rule
-
Tseng, P. An incremental gradient (-projection) method with momentum term and adaptive stepsiz rule. SIAM Journal on Optimization, 8 (2): 506-531, 1998.
-
(1998)
SIAM Journal on Optimization
, vol.8
, Issue.2
, pp. 506-531
-
-
Tseng, P.1
-
25
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11: 2534-2596, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2534-2596
-
-
Xiao, L.1
-
26
-
-
14344259207
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
Banff, Alberta, Canada
-
Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the 21st International Conference on Machine Learning (ICML), pp. 116-123, Banff, Alberta, Canada, 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning (ICML)
, pp. 116-123
-
-
Zhang, T.1
|