메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 353-361

Stochastic primal-dual coordinate method for regularized empirical risk minimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; OPTIMIZATION; STOCHASTIC SYSTEMS;

EID: 84969524464     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (123)

References (27)
  • 1
    • 81155150371 scopus 로고    scopus 로고
    • Incremental proximal methods for large scale convex optimization
    • Bertsekas, D. P. Incremental proximal methods for large scale convex optimization. Mathematical Programming, Ser.B, 129: 163-195, 2011.
    • (2011) Mathematical Programming, Ser.B , vol.129 , pp. 163-195
    • Bertsekas, D.P.1
  • 2
    • 39449100600 scopus 로고    scopus 로고
    • A convergent incremental gradient method with a constant step size
    • Blatt, D., Hero, A. O., and Gauchman, H. A convergent incremental gradient method with a constant step size, S1AM Journal on Optimization, 18 (1): 29-51, 2007.
    • (2007) S1AM Journal on Optimization , vol.18 , Issue.1 , pp. 29-51
    • Blatt, D.1    Hero, A.O.2    Gauchman, H.3
  • 3
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Lechevallier, Y. and Saporta, G. (eds.), Paris, France, August, Springer
    • Bottou, L. Large-scale machine learning with stochastic gradient descent. In Lechevallier, Y. and Saporta, G. (eds.), Proceedings of the 19th International Conference on Computational Statistics, pp. 177-187, Paris, France, August 2010. Springer.
    • (2010) Proceedings of the 19th International Conference on Computational Statistics , pp. 177-187
    • Bottou, L.1
  • 5
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • Chambolle, A. and Pock, T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40 (1): 120-145, 2011.
    • (2011) Journal of Mathematical Imaging and Vision , vol.40 , Issue.1 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 6
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • Duchi, J. and Singer, Y. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10: 2873-2898, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2873-2898
    • Duchi, J.1    Singer, Y.2
  • 12
    • 84937832340 scopus 로고    scopus 로고
    • An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization
    • Microsoft Research
    • Lin, Q., Lu, Z., and Xiao, L. An accelerated proximal coordinate gradient method and its application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94, Microsoft Research, 2014.
    • (2014) Technical Report MSR-TR-2014-94
    • Lin, Q.1    Lu, Z.2    Xiao, L.3
  • 13
    • 0036342213 scopus 로고    scopus 로고
    • Incremental subgradient methods for nondifferentiable optimization
    • Nedic, A. and Bertsekas, D. P. Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization, 12 (1): 109-138, 2001.
    • (2001) SIAM Journal on Optimization , vol.12 , Issue.1 , pp. 109-138
    • Nedic, A.1    Bertsekas, D.P.2
  • 14
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19 (4): 1574-1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 16
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • Nesterov, Y. Smooth minimization of nonsmooth functions. Mathematical Programming, 103: 127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 17
    • 84879800501 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite functions
    • Nesterov, Y. Gradient methods for minimizing composite functions. Mathematical Programming, Ser. B, 140: 125-161, 2013.
    • (2013) Mathematical Programming, Ser. B , vol.140 , pp. 125-161
    • Nesterov, Y.1
  • 20
    • 84872514178 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for finite training sets
    • Roux, N. L., Schmidt, M., and Bach, F. A stochastic gradient method with an exponential convergence rate for finite training sets. In Advances in Neural Information Processing Systems 25, pp. 2672-2680. 2012.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2672-2680
    • Roux, N.L.1    Schmidt, M.2    Bach, F.3
  • 21
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14: 567-599, 2013a.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 24
    • 0032222083 scopus 로고    scopus 로고
    • An incremental gradient (-projection) method with momentum term and adaptive stepsiz rule
    • Tseng, P. An incremental gradient (-projection) method with momentum term and adaptive stepsiz rule. SIAM Journal on Optimization, 8 (2): 506-531, 1998.
    • (1998) SIAM Journal on Optimization , vol.8 , Issue.2 , pp. 506-531
    • Tseng, P.1
  • 25
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11: 2534-2596, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2534-2596
    • Xiao, L.1
  • 26
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • Banff, Alberta, Canada
    • Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the 21st International Conference on Machine Learning (ICML), pp. 116-123, Banff, Alberta, Canada, 2004.
    • (2004) Proceedings of the 21st International Conference on Machine Learning (ICML) , pp. 116-123
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.