-
1
-
-
0033332404
-
Efficient regular data structures and algorithms for location and proximity problems
-
A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient regular data structures and algorithms for location and proximity problems. In Proc. 40th IEEE Sympos. Found. Comput. Sci., pages 160-170, 1999.
-
(1999)
Proc. 40th IEEE Sympos. Found. Comput. Sci.
, pp. 160-170
-
-
Amir, A.1
Efrat, A.2
Indyk, P.3
Samet, H.4
-
2
-
-
0032201716
-
An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
-
S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM, 45:891-923, 1998.
-
(1998)
J. ACM
, vol.45
, pp. 891-923
-
-
Arya, S.1
Mount, D.M.2
Netanyahu, N.S.3
Silverman, R.4
Wu, A.Y.5
-
3
-
-
0033259379
-
Parallel construction of quadtrees and quality triangulations
-
M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality triangulations. Int. J. Comput. Geom. Appi, 9:517-532, 1999.
-
(1999)
Int. J. Comput. Geom. Appi
, vol.9
, pp. 517-532
-
-
Bern, M.1
Eppstein, D.2
Teng, S.-H.3
-
4
-
-
0032389558
-
An optimal algorithm for closest pair maintenance
-
S. N. Besparayatnikh. An optimal algorithm for closest pair maintenance. Discrete Comput. Geom., 19:175-195, 1998.
-
(1998)
Discrete Comput. Geom.
, vol.19
, pp. 175-195
-
-
Besparayatnikh, S.N.1
-
5
-
-
84968891820
-
Towards optimal ϵ-approximate nearest neighbor algorithms in constant dimensions
-
M. Cary. Towards optimal ϵ-approximate nearest neighbor algorithms in constant dimensions. J. Algorithms, to appear. http://www.cs.washington.edu/homes/cary/papers/nn.ps.gz.
-
J. Algorithms, to Appear.
-
-
Cary, M.1
-
6
-
-
0032341649
-
Approximate nearest neighbor queries revisited
-
T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comp. Geom., 20:359-373, 1998.
-
(1998)
Discrete Comp. Geom.
, vol.20
, pp. 359-373
-
-
Chan, T.M.1
-
8
-
-
5444259433
-
Finding k-closest-pairs efficiently for high dimensional data
-
M. A. Lopez and S. Liao. Finding k-closest-pairs efficiently for high dimensional data. In Proc. 12th Canad. Conf. Comput. Geom., pages 197-204, 2000. http://www.cs.unb.ca/conf/cccg/eProceedings/29.ps.gz.
-
(2000)
Proc. 12th Canad. Conf. Comput. Geom.
, pp. 197-204
-
-
Lopez, M.A.1
Liao, S.2
-
9
-
-
9444238032
-
Fast spatial decomposition and closest pair computation for limited precision input
-
J. H. Reif and S. R. Tate. Fast spatial decomposition and closest pair computation for limited precision input. Algorithmica, 28:271-287, 2000.
-
(2000)
Algorithmica
, vol.28
, pp. 271-287
-
-
Reif, J.H.1
Tate, S.R.2
-
10
-
-
0004616914
-
Closest-point problems in computational geometry
-
(J. Urrutia and J. Sack, ed.), North-Holland
-
M. Smid. Closest-point problems in computational geometry. In Handbook of Computational Geometry (J. Urrutia and J. Sack, ed.), North-Holland, pages 877-935, 2000.
-
(2000)
Handbook of Computational Geometry
, pp. 877-935
-
-
Smid, M.1
|