-
1
-
-
84867117736
-
How to grade a test without knowing the answers-A Bayesian graphical model for adaptive crowdsourcing and aptitude testing
-
ACM
-
Y. Bachrach, T. Graepel, T. Minka, and J. Guiver. How To Grade a Test Without Knowing the Answers-A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing. In Proc. of the 29th Int. Conf. on Machine Learning, pages 1183-1190. ACM, 2012.
-
(2012)
Proc. of the 29th Int. Conf. on Machine Learning
, pp. 1183-1190
-
-
Bachrach, Y.1
Graepel, T.2
Minka, T.3
Guiver, J.4
-
4
-
-
78650808526
-
-
Machine Learning Springer, 4th edition
-
C. Bishop. Pattern Recognition and Machine Learning. Springer, 4th edition, 2006.
-
(2006)
Pattern Recognition and
-
-
Bishop, C.1
-
5
-
-
84904880229
-
Crowdsourcing goes mainstream in typhoon haiyan response
-
D. Butler. Crowdsourcing Goes Mainstream in Typhoon Haiyan Response. Nature News, doi:10.1038/nature.2013.14186, 2013.
-
(2013)
Nature News
-
-
Butler, D.1
-
6
-
-
78649725192
-
Pandemics in the age of twitter: Content analysis of tweets during the 2009
-
C. Chew and G. Eysenbach. Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak. PloS One, 5(11):e14118, 2010.
-
(2010)
H1N1 Outbreak PloS One
, vol.5
, Issue.11
, pp. e14118
-
-
Chew, C.1
Eysenbach, G.2
-
8
-
-
80055061019
-
A probabilistic framework to learn from multiple annotators with time-varying accuracy
-
P. Donmez, J. Carbonell, and J. Schneider. A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy. In Proc. of the Int. Conf. on Data Mining, pages 826-837, 2010.
-
(2010)
Proc. of the Int. Conf. on Data Mining
, pp. 826-837
-
-
Donmez, P.1
Carbonell, J.2
Schneider, J.3
-
11
-
-
84968716203
-
-
Distributional Structure, Word
-
Z. S. Harris. Distributional Structure. Word, pages 146-162, 1954.
-
(1954)
, pp. 146-162
-
-
Harris, Z.S.1
-
12
-
-
84914708568
-
On human-Agent collectives
-
N. R. Jennings, L. Moreau, D. Nicholson, S. D. Ramchurn, S. Roberts, T. Rodden, and A. Rogers. On Human-Agent Collectives. Communications of the ACM, 2014.
-
(2014)
Communications of the ACM
-
-
Jennings, N.R.1
Moreau, L.2
Nicholson, D.3
Ramchurn, S.D.4
Roberts, S.5
Rodden, T.6
Rogers, A.7
-
15
-
-
84883777323
-
Effects of gender and tie strength on twitter interactions
-
F. Kivran-Swaine, S. Brody, and M. Naaman. Effects of Gender and Tie Strength on Twitter Interactions. First Monday, 18(9), 2013.
-
(2013)
First Monday
, vol.18
, pp. 9
-
-
Kivran-Swaine, F.1
Brody, S.2
Naaman, M.3
-
17
-
-
84968787114
-
Predicting economic indicators from web text using sentiment composition
-
A. Levenberg, S. Pulman, K. Moilanen, E. Simpson, and S. Roberts. Predicting Economic Indicators from Web Text Using Sentiment Composition. In Int. Journal of Computer and Communication Engineering, 2014.
-
(2014)
Int. Journal of Computer and Communication Engineering
-
-
Levenberg, A.1
Pulman, S.2
Moilanen, K.3
Simpson, E.4
Roberts, S.5
-
22
-
-
84890895194
-
Independent evaluation of the ushahidi Haiti project
-
N. Morrow, N. Mock, A. Papendieck, and N. Kocmich. Independent Evaluation of the Ushahidi Haiti Project. Development Information Systems., 8:2011, 2011.
-
(2011)
Development Information Systems 2011
, vol.8
-
-
Morrow, N.1
Mock, N.2
Papendieck, A.3
Kocmich, N.4
-
25
-
-
84857856268
-
Eliminating spammers and ranking annotators for crowdsourced labeling tasks
-
V. C. Raykar and S. Yu. Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks. Journal of Machine Learning Research, 13:491-518, 2012.
-
(2012)
Journal of Machine Learning Research
, Issue.13
, pp. 491-518
-
-
Raykar, V.C.1
Yu, S.2
-
26
-
-
77951954464
-
Learning from crowds
-
V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. Learning From Crowds. Journal of Machine Learning Research, 11:1297-1322, 2010.
-
(2010)
Journal of Machine Learning Research
, Issue.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Valadez, G.H.4
Florin, C.5
Bogoni, L.6
Moy, L.7
-
27
-
-
84878784643
-
Learning from multiple annotators: Distinguishing good from
-
F. Rodrigues, F. Pereira, and B. Ribeiro. Learning from Multiple Annotators: Distinguishing Good from Random Labelers. Pattern Recognition Letters, 34(12):1428-1436, 2013.
-
(2013)
Random Labelers Pattern Recognition Letters
, vol.34
, Issue.12
, pp. 1428-1436
-
-
Rodrigues, F.1
Pereira, F.2
Ribeiro, B.3
-
28
-
-
84893070992
-
Dynamic Bayesian combination of multiple imperfect classifiers
-
Springer
-
E. Simpson, S. Roberts, I. Psorakis, and A. Smith. Dynamic Bayesian Combination of Multiple Imperfect Classifiers. In Intelligent Systems Reference Library series: Decision Making and Imperfection, pages 1-35. Springer, 2013.
-
(2013)
Intelligent Systems Reference Library Series: Decision Making and Imperfection
, pp. 1-35
-
-
Simpson, E.1
Roberts, S.2
Psorakis, I.3
Smith, A.4
-
29
-
-
84899439729
-
Efficient budget allocation with accuracy guarantees for crowdsourcing classification tasks
-
L. Tran-Thanh, M. Venanzi, A. Rogers, and N. R. Jennings. Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Classification Tasks. In Proc. of the 12th Int. Conf. on Autonomous Agents and Multiagent Systems, pages 901-908, 2013.
-
(2013)
Proc. of the 12th Int. Conf. on Autonomous Agents and Multiagent Systems
, pp. 901-908
-
-
Tran-Thanh, L.1
Venanzi, M.2
Rogers, A.3
Jennings, N.R.4
-
30
-
-
84909581998
-
Community-based Bayesian aggregation models for crowdsourcing
-
M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi. Community-based Bayesian Aggregation Models for Crowdsourcing. In Proc. of the 23rd Int. Conf. on World Wide Web, pages 155-164, 2014.
-
(2014)
Proc. of the 23rd Int. Conf. on World Wide Web
, pp. 155-164
-
-
Venanzi, M.1
Guiver, J.2
Kazai, G.3
Kohli, P.4
Shokouhi, M.5
-
31
-
-
85162055266
-
The multidimensional wisdom of crowds
-
P. Welinder, S. Branson, P. Perona, and S. J. Belongie. The Multidimensional Wisdom of Crowds. In Advances in Neural Information Processing Systems, pages 2424-2432, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 2424-2432
-
-
Welinder, P.1
Branson, S.2
Perona, P.3
Belongie, S.J.4
-
32
-
-
77951951247
-
Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo. Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise. In Advances in Neural Information Processing Systems, pages 2035-2043, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 2035-2043
-
-
Whitehill, J.1
Wu, T.-F.2
Bergsma, J.3
Movellan, J.R.4
Ruvolo, P.L.5
-
33
-
-
84885771772
-
Galaxy Zoo 2: Detailed morphological classifications for 304, 122 galaxies from the sloan digital sky survey
-
K. W. Willett, C. J. Lintott, S. P. Bamford, K. L. Masters, B. D. Simmons, K. R. Casteels, E. M. Edmondson, L. F. Fortson, S. Kaviraj, W. C. Keel, et al. Galaxy Zoo 2: Detailed Morphological Classifications for 304, 122 Galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 435(4):2835-2860, 2013.
-
(2013)
Monthly Notices of the Royal Astronomical Society
, vol.435
, Issue.4
, pp. 2835-2860
-
-
Willett, K.W.1
Lintott, C.J.2
Bamford, S.P.3
Masters, K.L.4
Simmons, B.D.5
Casteels, K.R.6
Edmondson, E.M.7
Fortson, L.F.8
Kaviraj, S.9
Keel, W.C.10
|