메뉴 건너뛰기




Volumn 27, Issue 2, 1998, Pages 303-320

Asymptotic behavior of solutions to a crystalline flow

Author keywords

Anisotropic energy density; Crystalline flows; Self similar solutions

Indexed keywords


EID: 84967541437     PISSN: 03854035     EISSN: None     Source Type: Journal    
DOI: 10.14492/hokmj/1351001287     Document Type: Article
Times cited : (23)

References (13)
  • 1
    • 33847303953 scopus 로고
    • Multiphase Thermomechanics with Interfacial Structure 2. Evolution of an isothermal Interface
    • Angenent S., Gurtin M., Multiphase Thermomechanics with Interfacial Structure 2. Evolution of an isothermal Interface. Archive for Rat. Mech. and Anal. 108 (1989), 323-391.
    • (1989) Archive for Rat. Mech. And Anal. , vol.108 , pp. 323-391
    • Angenent, S.1    Gurtin, M.2
  • 2
    • 0039806981 scopus 로고    scopus 로고
    • Existence of Self similar shrinking curves for anisotropic curvature flow equations
    • Dohmen C., Giga Y. and Mizoguchi N., Existence of Self similar shrinking curves for anisotropic curvature flow equations. Calc. Var. and PDEs, No.4, (1996), 103-119.
    • (1996) Calc. Var. And Pdes , vol.4 , pp. 103-119
    • Dohmen, C.1    Giga, Y.2    Mizoguchi, N.3
  • 4
    • 0003667237 scopus 로고
    • Cambridge University Press
    • Eggleston H.G., Convexity. Cambridge University Press, 1958.
    • (1958) Convexity
    • Eggleston, H.G.1
  • 5
    • 0030410335 scopus 로고    scopus 로고
    • A comparison theorem for crystalline evolution in the plane
    • Giga Y. and Gurtin M., A comparison theorem for crystalline evolution in the plane. Quart. Appl. Math., No.4, (1996), 727-737.
    • (1996) Quart. Appl. Math. , vol.4 , pp. 727-737
    • Giga, Y.1    Gurtin, M.2
  • 6
    • 84951613405 scopus 로고
    • Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature
    • Girão P.M. and Kohn R.V., Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994), 41-70.
    • (1994) Numer. Math , vol.67 , pp. 41-70
    • Girão, P.M.1    Kohn, R.V.2
  • 7
    • 0345788532 scopus 로고
    • Evolving plane curves by curvature in relative geometries II
    • Gage M. and Li Y., Evolving plane curves by curvature in relative geometries II. Duke Math. Journal, Vol.75, No. 1, (1994), 79-98.
    • (1994) Duke Math. Journal , vol.75 , Issue.1 , pp. 79-98
    • Gage, M.1    Li, Y.2
  • 9
    • 84974005139 scopus 로고
    • Evolving plane curves by curvature in relative geometries
    • Gage M., Evolving plane curves by curvature in relative geometries. Duke Math. Journal, Vol.72, No.2, (1993), 441-466.
    • (1993) Duke Math. Journal , vol.72 , Issue.2 , pp. 441-466
    • Gage, M.1
  • 10
    • 0000317873 scopus 로고
    • Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature
    • Girão P.M., Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995), 886-899.
    • (1995) SIAM J. Numer. Anal , vol.32 , pp. 886-899
    • Girão, P.M.1
  • 12
    • 0000842146 scopus 로고    scopus 로고
    • Uniqueness of Self-Similar Solutions for a Crystalline Flow
    • Stancu A., Uniqueness of Self-Similar Solutions for a Crystalline Flow. Indiana Univ. J. Math. No. 4 (1996), 1157-1174.
    • (1996) Indiana Univ. J. Math , vol.4 , pp. 1157-1174
    • Stancu, A.1
  • 13
    • 0001664793 scopus 로고
    • Motion of curves by crystalline curvature, including triple junctions and boundary points
    • Los Angeles, CA, Proc. Sympos. Pure Math. 54, Part 1, AMS, Providence, RI, 1993
    • Taylor J.E., Motion of curves by crystalline curvature, including triple junctions and boundary points. Diff. Geom.: partial diff. eqs. on manifolds (Los Angeles, CA, 1990) 417-438, Proc. Sympos. Pure Math. 54, Part 1, AMS, Providence, RI, 1993.
    • (1990) Diff. Geom.: Partial Diff. Eqs. On Manifolds , pp. 417-438
    • Taylor, J.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.