메뉴 건너뛰기




Volumn 26, Issue 7, 2016, Pages 511-525

Regulation of Genome Architecture and Function by Polycomb Proteins

Author keywords

Chromatin organization; Chromosome architecture; Epigenetics; Gene regulation; Polycomb group

Indexed keywords

BMI1 PROTEIN; POLYCOMB PROTEIN; POLYCOMB REPRESSIVE COMPLEX 2; PROTEIN; UNCLASSIFIED DRUG; POLYCOMB GROUP PROTEIN;

EID: 84967121127     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.04.009     Document Type: Review
Times cited : (80)

References (133)
  • 1
    • 33947693747 scopus 로고    scopus 로고
    • On the use of the word 'epigenetic'
    • Ptashne M. On the use of the word 'epigenetic'. Curr. Biol. 2007, 17:R233-R236.
    • (2007) Curr. Biol. , vol.17 , pp. R233-R236
    • Ptashne, M.1
  • 2
    • 84924875394 scopus 로고    scopus 로고
    • The role of chromosome domains in shaping the functional genome
    • Sexton T., Cavalli G. The role of chromosome domains in shaping the functional genome. Cell 2015, 160:1049-1059.
    • (2015) Cell , vol.160 , pp. 1049-1059
    • Sexton, T.1    Cavalli, G.2
  • 3
    • 84885393469 scopus 로고    scopus 로고
    • Transcriptional regulation by Polycomb group proteins
    • Di Croce L., Helin K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 2013, 20:1147-1155.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1147-1155
    • Di Croce, L.1    Helin, K.2
  • 4
    • 0018240421 scopus 로고
    • A gene complex controlling segmentation in Drosophila
    • Lewis E.B. A gene complex controlling segmentation in Drosophila. Nature 1978, 276:565-570.
    • (1978) Nature , vol.276 , pp. 565-570
    • Lewis, E.B.1
  • 5
    • 0020378065 scopus 로고
    • Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster
    • Duncan I.M. Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics 1982, 102:49-70.
    • (1982) Genetics , vol.102 , pp. 49-70
    • Duncan, I.M.1
  • 6
    • 70350149728 scopus 로고    scopus 로고
    • Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice
    • Schuettengruber B., Cavalli G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 2009, 136:3531-3542.
    • (2009) Development , vol.136 , pp. 3531-3542
    • Schuettengruber, B.1    Cavalli, G.2
  • 7
    • 84966386457 scopus 로고    scopus 로고
    • Regulation of gene transcription by Polycomb proteins
    • Aranda S., et al. Regulation of gene transcription by Polycomb proteins. Sci. Adv. 2015, 1:e1500737.
    • (2015) Sci. Adv. , vol.1
    • Aranda, S.1
  • 8
    • 7744228427 scopus 로고    scopus 로고
    • Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation
    • de Napoles M., et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 2004, 7:663-676.
    • (2004) Dev. Cell , vol.7 , pp. 663-676
    • de Napoles, M.1
  • 9
    • 7244234099 scopus 로고    scopus 로고
    • Role of histone H2A ubiquitination in Polycomb silencing
    • Wang H., et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004, 431:873-878.
    • (2004) Nature , vol.431 , pp. 873-878
    • Wang, H.1
  • 10
    • 0043127085 scopus 로고    scopus 로고
    • Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains
    • Fischle W., et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 2003, 17:1870-1881.
    • (2003) Genes Dev. , vol.17 , pp. 1870-1881
    • Fischle, W.1
  • 11
    • 0041624288 scopus 로고    scopus 로고
    • Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27
    • Min J., et al. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 2003, 17:1823-1828.
    • (2003) Genes Dev. , vol.17 , pp. 1823-1828
    • Min, J.1
  • 12
    • 84857367297 scopus 로고    scopus 로고
    • RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3
    • Tavares L., et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 2012, 148:664-678.
    • (2012) Cell , vol.148 , pp. 664-678
    • Tavares, L.1
  • 13
    • 84895805150 scopus 로고    scopus 로고
    • YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment
    • Basu A., et al. YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment. Nucleic Acids Res. 2014, 42:2208-2223.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 2208-2223
    • Basu, A.1
  • 14
    • 58249119616 scopus 로고    scopus 로고
    • Polycomb group protein Suppressor 2 of zeste is a functional homolog of Posterior Sex Combs
    • Lo S.M., et al. Polycomb group protein Suppressor 2 of zeste is a functional homolog of Posterior Sex Combs. Mol. Cell Biol. 2009, 29:515-525.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 515-525
    • Lo, S.M.1
  • 15
    • 0034785891 scopus 로고    scopus 로고
    • Reconstitution of a functional core Polycomb repressive complex
    • Francis N.J., et al. Reconstitution of a functional core Polycomb repressive complex. Mol. Cell 2001, 8:545-556.
    • (2001) Mol. Cell , vol.8 , pp. 545-556
    • Francis, N.J.1
  • 16
    • 54349083294 scopus 로고    scopus 로고
    • DKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing
    • Lagarou A., et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 2008, 22:2799-2810.
    • (2008) Genes Dev. , vol.22 , pp. 2799-2810
    • Lagarou, A.1
  • 17
    • 33748641974 scopus 로고    scopus 로고
    • Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets
    • Gearhart M.D., et al. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell Biol. 2006, 26:6880-6889.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 6880-6889
    • Gearhart, M.D.1
  • 18
    • 34249715325 scopus 로고    scopus 로고
    • Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor
    • Sanchez C., et al. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol. Cell Proteomics 2007, 6:820-834.
    • (2007) Mol. Cell Proteomics , vol.6 , pp. 820-834
    • Sanchez, C.1
  • 19
    • 8144230178 scopus 로고    scopus 로고
    • Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity
    • Pasini D., et al. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004, 23:4061-4071.
    • (2004) EMBO J. , vol.23 , pp. 4061-4071
    • Pasini, D.1
  • 20
    • 18644383738 scopus 로고    scopus 로고
    • Histone methyltransferase activity of a Drosophila Polycomb group repressor complex
    • Muller J., et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002, 111:197-208.
    • (2002) Cell , vol.111 , pp. 197-208
    • Muller, J.1
  • 21
    • 1942503942 scopus 로고    scopus 로고
    • The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3
    • Cao R., Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 2004, 14:155-164.
    • (2004) Curr. Opin. Genet. Dev. , vol.14 , pp. 155-164
    • Cao, R.1    Zhang, Y.2
  • 22
    • 55949132133 scopus 로고    scopus 로고
    • Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms
    • Margueron R., et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 2008, 32:503-518.
    • (2008) Mol. Cell , vol.32 , pp. 503-518
    • Margueron, R.1
  • 23
    • 55949124844 scopus 로고    scopus 로고
    • EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency
    • Shen X., et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 2008, 32:491-502.
    • (2008) Mol. Cell , vol.32 , pp. 491-502
    • Shen, X.1
  • 24
    • 55549103314 scopus 로고    scopus 로고
    • A model for transmission of the H3K27me3 epigenetic mark
    • Hansen K.H., et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 2008, 10:1291-1300.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1291-1300
    • Hansen, K.H.1
  • 25
    • 70349952171 scopus 로고    scopus 로고
    • Role of the Polycomb protein EED in the propagation of repressive histone marks
    • Margueron R., et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 2009, 461:762-767.
    • (2009) Nature , vol.461 , pp. 762-767
    • Margueron, R.1
  • 26
    • 84881497258 scopus 로고    scopus 로고
    • Molecular architecture of human Polycomb repressive complex 2
    • Ciferri C., et al. Molecular architecture of human Polycomb repressive complex 2. Elife 2012, 1:e00005.
    • (2012) Elife , vol.1
    • Ciferri, C.1
  • 27
    • 84974549812 scopus 로고    scopus 로고
    • RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability
    • Satrimafitrah P., et al. RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability. Chromosome Res. 2015.
    • (2015) Chromosome Res.
    • Satrimafitrah, P.1
  • 28
    • 79955584291 scopus 로고    scopus 로고
    • The enhancer of trithorax and Polycomb gene Caf1/p55 is essential for cell survival and patterning in Drosophila development
    • Anderson A.E., et al. The enhancer of trithorax and Polycomb gene Caf1/p55 is essential for cell survival and patterning in Drosophila development. Development 2011, 138:1957-1966.
    • (2011) Development , vol.138 , pp. 1957-1966
    • Anderson, A.E.1
  • 29
    • 17644410781 scopus 로고    scopus 로고
    • Nucleosome binding and histone methyltransferase activity of Drosophila PRC2
    • Nekrasov M., et al. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 2005, 6:348-353.
    • (2005) EMBO Rep. , vol.6 , pp. 348-353
    • Nekrasov, M.1
  • 30
    • 34648834735 scopus 로고    scopus 로고
    • Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes
    • Nekrasov M., et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 2007, 26:4078-4088.
    • (2007) EMBO J. , vol.26 , pp. 4078-4088
    • Nekrasov, M.1
  • 31
    • 42149149895 scopus 로고    scopus 로고
    • Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo
    • Sarma K., et al. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell Biol. 2008, 28:2718-2731.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 2718-2731
    • Sarma, K.1
  • 32
    • 3042801308 scopus 로고    scopus 로고
    • SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex
    • Cao R., Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 2004, 15:57-67.
    • (2004) Mol. Cell , vol.15 , pp. 57-67
    • Cao, R.1    Zhang, Y.2
  • 33
    • 66249121737 scopus 로고    scopus 로고
    • AEBP2 as a potential targeting protein for Polycomb repression complex PRC2
    • Kim H., et al. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2. Nucleic Acids Res. 2009, 37:2940-2950.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 2940-2950
    • Kim, H.1
  • 34
    • 72249119297 scopus 로고    scopus 로고
    • Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells
    • Peng J.C., et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2009, 139:1290-1302.
    • (2009) Cell , vol.139 , pp. 1290-1302
    • Peng, J.C.1
  • 35
    • 79952135845 scopus 로고    scopus 로고
    • PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming
    • Zhang Z., et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells 2011, 29:229-240.
    • (2011) Stem Cells , vol.29 , pp. 229-240
    • Zhang, Z.1
  • 36
    • 84892866184 scopus 로고    scopus 로고
    • Jarid2 Is implicated in the initial xist-induced targeting of PRC2 to the inactive X chromosome
    • da Rocha S.T., et al. Jarid2 Is implicated in the initial xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 2014, 53:301-316.
    • (2014) Mol. Cell , vol.53 , pp. 301-316
    • da Rocha, S.T.1
  • 37
    • 77953120646 scopus 로고    scopus 로고
    • Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators
    • Landeira D., et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat. Cell Biol. 2010, 12:618-624.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 618-624
    • Landeira, D.1
  • 38
    • 77949414371 scopus 로고    scopus 로고
    • JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells
    • Pasini D., et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010, 464:306-310.
    • (2010) Nature , vol.464 , pp. 306-310
    • Pasini, D.1
  • 39
    • 84890589760 scopus 로고    scopus 로고
    • Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin
    • Son J., et al. Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev. 2013, 27:2663-2677.
    • (2013) Genes Dev. , vol.27 , pp. 2663-2677
    • Son, J.1
  • 40
    • 33745151459 scopus 로고    scopus 로고
    • A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities
    • Klymenko T., et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 2006, 20:1110-1122.
    • (2006) Genes Dev. , vol.20 , pp. 1110-1122
    • Klymenko, T.1
  • 41
    • 84892760092 scopus 로고    scopus 로고
    • Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes
    • Lecona E., et al. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes. PLoS Biol. 2013, 11:e1001737.
    • (2013) PLoS Biol. , vol.11
    • Lecona, E.1
  • 42
    • 84962638112 scopus 로고    scopus 로고
    • Combgap contributes to recruitment of Polycomb group proteins in Drosophila
    • Ray P., et al. Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc. Natl. Acad Sci. U.S.A. 2016, 113:3826-3831.
    • (2016) Proc. Natl. Acad Sci. U.S.A. , vol.113 , pp. 3826-3831
    • Ray, P.1
  • 43
    • 84873910684 scopus 로고    scopus 로고
    • Polycomb group response elements in Drosophila and vertebrates
    • Kassis J.A., Brown J.L. Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 2013, 81:83-118.
    • (2013) Adv. Genet. , vol.81 , pp. 83-118
    • Kassis, J.A.1    Brown, J.L.2
  • 44
    • 2942574510 scopus 로고    scopus 로고
    • Hierarchical recruitment of Polycomb group silencing complexes
    • Wang L., et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 2004, 14:637-646.
    • (2004) Mol. Cell , vol.14 , pp. 637-646
    • Wang, L.1
  • 45
    • 34248169728 scopus 로고    scopus 로고
    • The Polycomb group protein Suz12 is required for embryonic stem cell differentiation
    • Pasini D., et al. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell Biol. 2007, 27:3769-3779.
    • (2007) Mol. Cell Biol. , vol.27 , pp. 3769-3779
    • Pasini, D.1
  • 46
    • 67650443962 scopus 로고    scopus 로고
    • Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt
    • Grimm C., et al. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO J. 2009, 28:1965-1977.
    • (2009) EMBO J. , vol.28 , pp. 1965-1977
    • Grimm, C.1
  • 47
    • 23044476138 scopus 로고    scopus 로고
    • Structural organization of a sex-comb-on-midleg/polyhomeotic copolymer
    • Kim C.A., et al. Structural organization of a sex-comb-on-midleg/polyhomeotic copolymer. J. Biol. Chem. 2005, 280:27769-27775.
    • (2005) J. Biol. Chem. , vol.280 , pp. 27769-27775
    • Kim, C.A.1
  • 48
    • 0030832045 scopus 로고    scopus 로고
    • A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions
    • Peterson A.J., et al. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions. Mol. Cell Biol. 1997, 17:6683-6692.
    • (1997) Mol. Cell Biol. , vol.17 , pp. 6683-6692
    • Peterson, A.J.1
  • 49
    • 3843136318 scopus 로고    scopus 로고
    • Requirement for sex comb on midleg protein interactions in Drosophila Polycomb group repression
    • Peterson A.J., et al. Requirement for sex comb on midleg protein interactions in Drosophila Polycomb group repression. Genetics 2004, 167:1225-1239.
    • (2004) Genetics , vol.167 , pp. 1225-1239
    • Peterson, A.J.1
  • 50
    • 84902127230 scopus 로고    scopus 로고
    • Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation
    • Blackledge N.P., et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 2014, 157:1445-1459.
    • (2014) Cell , vol.157 , pp. 1445-1459
    • Blackledge, N.P.1
  • 51
    • 84902333500 scopus 로고    scopus 로고
    • Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment
    • Cooper S., et al. Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014, 7:1456-1470.
    • (2014) Cell Rep. , vol.7 , pp. 1456-1470
    • Cooper, S.1
  • 52
    • 84901987800 scopus 로고    scopus 로고
    • Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression
    • Kalb R., et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 2014, 21:569-571.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 569-571
    • Kalb, R.1
  • 53
    • 84905457337 scopus 로고    scopus 로고
    • Combinatorial interactions are required for the efficient recruitment of pho repressive complex (PhoRC) to Polycomb response elements
    • Kahn T.G., et al. Combinatorial interactions are required for the efficient recruitment of pho repressive complex (PhoRC) to Polycomb response elements. PLoS Genet. 2014, 10:e1004495.
    • (2014) PLoS Genet. , vol.10
    • Kahn, T.G.1
  • 54
    • 84907985757 scopus 로고    scopus 로고
    • Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila
    • Schuettengruber B., et al. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep. 2014, 9:219-233.
    • (2014) Cell Rep. , vol.9 , pp. 219-233
    • Schuettengruber, B.1
  • 55
    • 78650684739 scopus 로고    scopus 로고
    • GC-rich sequence elements recruit PRC2 in mammalian ES cells
    • Mendenhall E.M., et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 2010, 6:e1001244.
    • (2010) PLoS Genet. , vol.6
    • Mendenhall, E.M.1
  • 56
    • 84905572005 scopus 로고    scopus 로고
    • Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide
    • Riising E.M., et al. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 2014, 55:347-360.
    • (2014) Mol. Cell , vol.55 , pp. 347-360
    • Riising, E.M.1
  • 57
    • 84878988149 scopus 로고    scopus 로고
    • KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands
    • Farcas A.M., et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife 2012, 1:e00205.
    • (2012) Elife , vol.1
    • Farcas, A.M.1
  • 58
    • 84875799835 scopus 로고    scopus 로고
    • Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation
    • Wu X., et al. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 2013, 49:1134-1146.
    • (2013) Mol. Cell , vol.49 , pp. 1134-1146
    • Wu, X.1
  • 59
    • 84884626274 scopus 로고    scopus 로고
    • Chromatin sampling - an emerging perspective on targeting Polycomb repressor proteins
    • Klose R.J., et al. Chromatin sampling - an emerging perspective on targeting Polycomb repressor proteins. PLoS Genet. 2013, 9:e1003717.
    • (2013) PLoS Genet. , vol.9
    • Klose, R.J.1
  • 60
    • 84895511915 scopus 로고    scopus 로고
    • Principles of nucleation of H3K27 methylation during embryonic development
    • van Heeringen S.J., et al. Principles of nucleation of H3K27 methylation during embryonic development. Genome Res. 2014, 24:401-410.
    • (2014) Genome Res. , vol.24 , pp. 401-410
    • van Heeringen, S.J.1
  • 61
    • 84922713288 scopus 로고    scopus 로고
    • AEBP2 as a transcriptional activator and its role in cell migration
    • Kim H., et al. AEBP2 as a transcriptional activator and its role in cell migration. Genomics 2015, 105:108-115.
    • (2015) Genomics , vol.105 , pp. 108-115
    • Kim, H.1
  • 62
    • 84859260959 scopus 로고    scopus 로고
    • REST-mediated recruitment of Polycomb repressor complexes in mammalian cells
    • Dietrich N., et al. REST-mediated recruitment of Polycomb repressor complexes in mammalian cells. PLoS Genet. 2012, 8:e1002494.
    • (2012) PLoS Genet. , vol.8
    • Dietrich, N.1
  • 63
    • 79956157987 scopus 로고    scopus 로고
    • REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements
    • Ren X., Kerppola T.K. REST interacts with Cbx proteins and regulates Polycomb repressive complex 1 occupancy at RE1 elements. Mol. Cell Biol. 2011, 31:2100-2110.
    • (2011) Mol. Cell Biol. , vol.31 , pp. 2100-2110
    • Ren, X.1    Kerppola, T.K.2
  • 64
    • 84863012512 scopus 로고    scopus 로고
    • Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors
    • Yu M., et al. Direct recruitment of Polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol. Cell 2012, 45:330-343.
    • (2012) Mol. Cell , vol.45 , pp. 330-343
    • Yu, M.1
  • 65
    • 19944431321 scopus 로고    scopus 로고
    • A novel repressive E2F6 complex containing the Polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner
    • Attwooll C., et al. A novel repressive E2F6 complex containing the Polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J. Biol. Chem. 2005, 280:1199-1208.
    • (2005) J. Biol. Chem. , vol.280 , pp. 1199-1208
    • Attwooll, C.1
  • 66
    • 0037052539 scopus 로고    scopus 로고
    • A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells
    • Ogawa H., et al. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 2002, 296:1132-1136.
    • (2002) Science , vol.296 , pp. 1132-1136
    • Ogawa, H.1
  • 67
    • 0035852632 scopus 로고    scopus 로고
    • The E2F6 transcription factor is a component of the mammalian Bmi1-containing Polycomb complex
    • Trimarchi J.M., et al. The E2F6 transcription factor is a component of the mammalian Bmi1-containing Polycomb complex. Proc. Natl. Acad Sci. U.S.A. 2001, 98:1519-1524.
    • (2001) Proc. Natl. Acad Sci. U.S.A. , vol.98 , pp. 1519-1524
    • Trimarchi, J.M.1
  • 68
    • 47949125993 scopus 로고    scopus 로고
    • Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
    • Herranz N., et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol. 2008, 28:4772-4781.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 4772-4781
    • Herranz, N.1
  • 69
    • 84891845285 scopus 로고    scopus 로고
    • Interferon-gamma resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis
    • Londhe P., Davie J.K. Interferon-gamma resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis. Sci. Signal 2013, 6:ra107.
    • (2013) Sci. Signal , vol.6
    • Londhe, P.1    Davie, J.K.2
  • 70
    • 55449105221 scopus 로고    scopus 로고
    • Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains
    • Ku M., et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008, 4:e1000242.
    • (2008) PLoS Genet. , vol.4
    • Ku, M.1
  • 71
    • 84860370054 scopus 로고    scopus 로고
    • Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells
    • Vella P., et al. Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Res. 2012, 40:3403-3418.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 3403-3418
    • Vella, P.1
  • 72
    • 77954383036 scopus 로고    scopus 로고
    • Vertebrate homologue of Drosophila GAGA factor
    • Matharu N.K., et al. Vertebrate homologue of Drosophila GAGA factor. J. Mol. Biol. 2010, 400:434-447.
    • (2010) J. Mol. Biol. , vol.400 , pp. 434-447
    • Matharu, N.K.1
  • 73
    • 84975673496 scopus 로고    scopus 로고
    • The quest for mammalian Polycomb response elements: are we there yet?
    • Bauer M., et al. The quest for mammalian Polycomb response elements: are we there yet?. Chromosoma 2015.
    • (2015) Chromosoma
    • Bauer, M.1
  • 74
    • 84875418596 scopus 로고    scopus 로고
    • Noncoding RNA and Polycomb recruitment
    • Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA 2013, 19:429-442.
    • (2013) RNA , vol.19 , pp. 429-442
    • Brockdorff, N.1
  • 75
    • 84873513937 scopus 로고    scopus 로고
    • A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb
    • Pengelly A.R., et al. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 2013, 339:698-699.
    • (2013) Science , vol.339 , pp. 698-699
    • Pengelly, A.R.1
  • 76
    • 79959348134 scopus 로고    scopus 로고
    • The Polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo
    • Chopra V.S., et al. The Polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol. Cell 2011, 42:837-844.
    • (2011) Mol. Cell , vol.42 , pp. 837-844
    • Chopra, V.S.1
  • 77
    • 38149081168 scopus 로고    scopus 로고
    • Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation
    • Nakagawa T., et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev. 2008, 22:37-49.
    • (2008) Genes Dev. , vol.22 , pp. 37-49
    • Nakagawa, T.1
  • 78
    • 38149098408 scopus 로고    scopus 로고
    • Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
    • Zhou W., et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 2008, 29:69-80.
    • (2008) Mol. Cell , vol.29 , pp. 69-80
    • Zhou, W.1
  • 79
    • 36749089980 scopus 로고    scopus 로고
    • Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells
    • Stock J.K., et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 2007, 9:1428-1435.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1428-1435
    • Stock, J.K.1
  • 80
    • 84938149171 scopus 로고    scopus 로고
    • Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation
    • Pengelly A.R., et al. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev. 2015, 29:1487-1492.
    • (2015) Genes Dev. , vol.29 , pp. 1487-1492
    • Pengelly, A.R.1
  • 81
    • 84957812666 scopus 로고    scopus 로고
    • Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain
    • Tie F., et al. Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc. Natl. Acad Sci. U.S.A. 2016, 113:E744-E753.
    • (2016) Proc. Natl. Acad Sci. U.S.A. , vol.113 , pp. E744-E753
    • Tie, F.1
  • 82
    • 9444244427 scopus 로고    scopus 로고
    • Chromatin compaction by a Polycomb group protein complex
    • Francis N.J., et al. Chromatin compaction by a Polycomb group protein complex. Science 2004, 306:1574-1577.
    • (2004) Science , vol.306 , pp. 1574-1577
    • Francis, N.J.1
  • 83
    • 80052422187 scopus 로고    scopus 로고
    • Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes
    • Eskeland R., et al. Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes. Cold Spring Harb Symp. Quant. Biol. 2010, 75:71-78.
    • (2010) Cold Spring Harb Symp. Quant. Biol. , vol.75 , pp. 71-78
    • Eskeland, R.1
  • 84
    • 84865292901 scopus 로고    scopus 로고
    • Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation
    • Yuan W., et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 2012, 337:971-975.
    • (2012) Science , vol.337 , pp. 971-975
    • Yuan, W.1
  • 85
    • 10044244766 scopus 로고    scopus 로고
    • Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila
    • Ebert A., et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 2004, 18:2973-2983.
    • (2004) Genes Dev. , vol.18 , pp. 2973-2983
    • Ebert, A.1
  • 86
    • 84892366110 scopus 로고    scopus 로고
    • Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
    • Ferrari K.J., et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 2014, 53:49-62.
    • (2014) Mol. Cell , vol.53 , pp. 49-62
    • Ferrari, K.J.1
  • 87
    • 77951855269 scopus 로고    scopus 로고
    • Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36
    • Jung H.R., et al. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell Proteomics 2010, 9:838-850.
    • (2010) Mol. Cell Proteomics , vol.9 , pp. 838-850
    • Jung, H.R.1
  • 88
    • 9144268924 scopus 로고    scopus 로고
    • Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
    • Peters A.H., et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 2003, 12:1577-1589.
    • (2003) Mol. Cell , vol.12 , pp. 1577-1589
    • Peters, A.H.1
  • 89
    • 84867009687 scopus 로고    scopus 로고
    • Asymmetrically modified nucleosomes
    • Voigt P., et al. Asymmetrically modified nucleosomes. Cell 2012, 151:181-193.
    • (2012) Cell , vol.151 , pp. 181-193
    • Voigt, P.1
  • 90
    • 84938855026 scopus 로고    scopus 로고
    • Genome-wide activities of Polycomb complexes control pervasive transcription
    • Lee H.G., et al. Genome-wide activities of Polycomb complexes control pervasive transcription. Genome Res. 2015, 25:1170-1181.
    • (2015) Genome Res. , vol.25 , pp. 1170-1181
    • Lee, H.G.1
  • 91
    • 34848825691 scopus 로고    scopus 로고
    • Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex
    • Lanzuolo C., et al. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat. Cell Biol. 2007, 9:1167-1174.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1167-1174
    • Lanzuolo, C.1
  • 92
    • 79952294070 scopus 로고    scopus 로고
    • A chromatin insulator driving three-dimensional Polycomb Response Element (PRE) contacts and Polycomb association with the chromatin fiber
    • Comet I., et al. A chromatin insulator driving three-dimensional Polycomb Response Element (PRE) contacts and Polycomb association with the chromatin fiber. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2294-2299.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2294-2299
    • Comet, I.1
  • 93
    • 84899922567 scopus 로고    scopus 로고
    • Identification of regulators of the three-dimensional Polycomb organization by a microscopy-based genome-wide RNAi screen
    • Gonzalez I., et al. Identification of regulators of the three-dimensional Polycomb organization by a microscopy-based genome-wide RNAi screen. Mol. Cell 2014, 54:485-499.
    • (2014) Mol. Cell , vol.54 , pp. 485-499
    • Gonzalez, I.1
  • 94
    • 28544450393 scopus 로고    scopus 로고
    • Association of BMI1 with Polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1
    • Hernandez-Munoz I., et al. Association of BMI1 with Polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell Biol. 2005, 25:11047-11058.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 11047-11058
    • Hernandez-Munoz, I.1
  • 95
    • 84892474589 scopus 로고    scopus 로고
    • Polycomb silencing: from linear chromatin domains to 3D chromosome folding
    • Cheutin T., Cavalli G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr. Opin. Genet. Dev. 2014, 25C:30-37.
    • (2014) Curr. Opin. Genet. Dev. , vol.25C , pp. 30-37
    • Cheutin, T.1    Cavalli, G.2
  • 96
    • 84883798471 scopus 로고    scopus 로고
    • PcG proteins, DNA methylation, and gene repression by chromatin looping
    • Tiwari V.K., et al. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008, 6:2911-2927.
    • (2008) PLoS Biol. , vol.6 , pp. 2911-2927
    • Tiwari, V.K.1
  • 97
    • 78651514974 scopus 로고    scopus 로고
    • Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila
    • Bantignies F., et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 2011, 144:214-226.
    • (2011) Cell , vol.144 , pp. 214-226
    • Bantignies, F.1
  • 98
    • 84874266908 scopus 로고    scopus 로고
    • Polycomb domain formation depends on short and long distance regulatory cues
    • Schuettengruber B., Cavalli G. Polycomb domain formation depends on short and long distance regulatory cues. PLoS ONE 2013, 8:e56531.
    • (2013) PLoS ONE , vol.8
    • Schuettengruber, B.1    Cavalli, G.2
  • 99
    • 0141706718 scopus 로고    scopus 로고
    • Inheritance of Polycomb-dependent chromosomal interactions in Drosophila
    • Bantignies F., et al. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 2003, 17:2406-2420.
    • (2003) Genes Dev. , vol.17 , pp. 2406-2420
    • Bantignies, F.1
  • 100
    • 84876879622 scopus 로고    scopus 로고
    • Insulators target active genes to transcription factories and Polycomb-repressed genes to Polycomb bodies
    • Li H.B., et al. Insulators target active genes to transcription factories and Polycomb-repressed genes to Polycomb bodies. PLoS Genet. 2013, 9:e1003436.
    • (2013) PLoS Genet. , vol.9
    • Li, H.B.1
  • 101
    • 85027929606 scopus 로고    scopus 로고
    • Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization
    • Denholtz M., et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization. Cell Stem Cell 2013, 13:602-616.
    • (2013) Cell Stem Cell , vol.13 , pp. 602-616
    • Denholtz, M.1
  • 102
    • 84928165183 scopus 로고    scopus 로고
    • Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain
    • Vieux-Rochas M., et al. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl. Acad Sci. U.S.A. 2015, 112:4672-4677.
    • (2015) Proc. Natl. Acad Sci. U.S.A. , vol.112 , pp. 4672-4677
    • Vieux-Rochas, M.1
  • 103
    • 84952022547 scopus 로고    scopus 로고
    • Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency
    • Joshi O., et al. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 2015, 17:748-757.
    • (2015) Cell Stem Cell , vol.17 , pp. 748-757
    • Joshi, O.1
  • 104
    • 84942852834 scopus 로고    scopus 로고
    • Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome
    • Schoenfelder S., et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 2015, 47:1179-1186.
    • (2015) Nat. Genet. , vol.47 , pp. 1179-1186
    • Schoenfelder, S.1
  • 105
    • 84952639359 scopus 로고    scopus 로고
    • Polycomb in transcriptional phase transition of developmental genes
    • Kondo T., et al. Polycomb in transcriptional phase transition of developmental genes. Trends Biochem. Sci. 2016, 41:9-19.
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 9-19
    • Kondo, T.1
  • 106
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
    • Sanborn A.L., et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad Sci. U.S.A. 2015, 112:E6456-E6465.
    • (2015) Proc. Natl. Acad Sci. U.S.A. , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1
  • 107
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J.R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 108
    • 84924533047 scopus 로고    scopus 로고
    • Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
    • Vietri Rudan M., et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015, 10:1297-1309.
    • (2015) Cell Rep. , vol.10 , pp. 1297-1309
    • Vietri Rudan, M.1
  • 109
    • 84916880365 scopus 로고    scopus 로고
    • Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
    • Dowen J.M., et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 2014, 159:374-387.
    • (2014) Cell , vol.159 , pp. 374-387
    • Dowen, J.M.1
  • 110
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton T., et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458-472.
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 111
    • 84923771297 scopus 로고    scopus 로고
    • CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation
    • Narendra V., et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 2015, 347:1017-1021.
    • (2015) Science , vol.347 , pp. 1017-1021
    • Narendra, V.1
  • 112
    • 84899894562 scopus 로고    scopus 로고
    • Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci
    • Noordermeer D., et al. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. Elife 2014, 3:e02557.
    • (2014) Elife , vol.3
    • Noordermeer, D.1
  • 113
    • 80054110441 scopus 로고    scopus 로고
    • The dynamic architecture of Hox gene clusters
    • Noordermeer D., et al. The dynamic architecture of Hox gene clusters. Science 2011, 334:222-225.
    • (2011) Science , vol.334 , pp. 222-225
    • Noordermeer, D.1
  • 114
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora E.P., et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485:381-385.
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 115
    • 84957665004 scopus 로고    scopus 로고
    • Cause and consequence of tethering a subTAD to different nuclear compartments
    • Wijchers P.J., et al. Cause and consequence of tethering a subTAD to different nuclear compartments. Mol. Cell 2016, 61:461-473.
    • (2016) Mol. Cell , vol.61 , pp. 461-473
    • Wijchers, P.J.1
  • 116
    • 84884725454 scopus 로고    scopus 로고
    • SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing
    • Isono K., et al. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev. Cell 2013, 26:565-577.
    • (2013) Dev. Cell , vol.26 , pp. 565-577
    • Isono, K.1
  • 117
    • 84955121651 scopus 로고    scopus 로고
    • Chromatin topology is coupled to Polycomb group protein subnuclear organization
    • Wani A.H., et al. Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat. Commun. 2016, 7:10291.
    • (2016) Nat. Commun. , vol.7
    • Wani, A.H.1
  • 118
    • 84918582083 scopus 로고    scopus 로고
    • O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic
    • Gambetta M.C., Muller J. O-GlcNAcylation prevents aggregation of the Polycomb group repressor Polyhomeotic. Dev. Cell 2014, 31:629-639.
    • (2014) Dev. Cell , vol.31 , pp. 629-639
    • Gambetta, M.C.1    Muller, J.2
  • 119
    • 84955290042 scopus 로고    scopus 로고
    • Super-resolution imaging reveals distinct chromatin folding for different epigenetic states
    • Boettiger A.N., et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 2016, 529:418-422.
    • (2016) Nature , vol.529 , pp. 418-422
    • Boettiger, A.N.1
  • 120
    • 84872025457 scopus 로고    scopus 로고
    • A Polycomb group protein is retained at specific sites on chromatin in mitosis
    • Follmer N.E., et al. A Polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet. 2012, 8:e1003135.
    • (2012) PLoS Genet. , vol.8
    • Follmer, N.E.1
  • 121
    • 33747826650 scopus 로고    scopus 로고
    • JPREdictor: a versatile tool for the prediction of cis-regulatory elements
    • Fiedler T., Rehmsmeier M. jPREdictor: a versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Res. 2006, 34:W546-W550.
    • (2006) Nucleic Acids Res. , vol.34 , pp. W546-W550
    • Fiedler, T.1    Rehmsmeier, M.2
  • 122
    • 0242362735 scopus 로고    scopus 로고
    • Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster
    • Ringrose L., et al. Genome-wide prediction of Polycomb/Trithorax response elements in Drosophila melanogaster. Dev. Cell 2003, 5:759-771.
    • (2003) Dev. Cell , vol.5 , pp. 759-771
    • Ringrose, L.1
  • 123
    • 58849088872 scopus 로고    scopus 로고
    • Functional anatomy of Polycomb and Trithorax chromatin landscapes in Drosophila embryos
    • Schuettengruber B., et al. Functional anatomy of Polycomb and Trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 2009, 7:e13.
    • (2009) PLoS Biol. , vol.7
    • Schuettengruber, B.1
  • 124
    • 84856756676 scopus 로고    scopus 로고
    • Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs
    • Brookes E., et al. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 2012, 10:157-170.
    • (2012) Cell Stem Cell , vol.10 , pp. 157-170
    • Brookes, E.1
  • 125
    • 84883796667 scopus 로고    scopus 로고
    • The Aurora B kinase and the Polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes
    • Frangini A., et al. The Aurora B kinase and the Polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. Mol. Cell 2013, 51:647-661.
    • (2013) Mol. Cell , vol.51 , pp. 647-661
    • Frangini, A.1
  • 126
    • 84887460647 scopus 로고    scopus 로고
    • PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells
    • Kaneko S., et al. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 2013, 20:1258-1264.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1258-1264
    • Kaneko, S.1
  • 127
    • 84856237597 scopus 로고    scopus 로고
    • Polycomb protein Ezh1 promotes RNA polymerase II elongation
    • Mousavi K., et al. Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol. Cell 2012, 45:255-262.
    • (2012) Mol. Cell , vol.45 , pp. 255-262
    • Mousavi, K.1
  • 128
    • 84955387038 scopus 로고    scopus 로고
    • Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis
    • van den Boom V., et al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 2016, 14:332-346.
    • (2016) Cell Rep. , vol.14 , pp. 332-346
    • van den Boom, V.1
  • 129
    • 84919608420 scopus 로고    scopus 로고
    • A Cbx8-containing Polycomb complex facilitates the transition to gene activation during ES cell differentiation
    • Creppe C., et al. A Cbx8-containing Polycomb complex facilitates the transition to gene activation during ES cell differentiation. PLoS Genet. 2014, 10:e1004851.
    • (2014) PLoS Genet. , vol.10
    • Creppe, C.1
  • 130
    • 84941000940 scopus 로고    scopus 로고
    • Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms
    • Morey L., et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell 2015, 17:300-315.
    • (2015) Cell Stem Cell , vol.17 , pp. 300-315
    • Morey, L.1
  • 131
    • 84922217833 scopus 로고    scopus 로고
    • An AUTS2-Polycomb complex activates gene expression in the CNS
    • Gao Z., et al. An AUTS2-Polycomb complex activates gene expression in the CNS. Nature 2014, 516:349-354.
    • (2014) Nature , vol.516 , pp. 349-354
    • Gao, Z.1
  • 132
    • 84966262577 scopus 로고    scopus 로고
    • A positive role for Polycomb in transcriptional regulation via H4K20me1
    • Lv X., et al. A positive role for Polycomb in transcriptional regulation via H4K20me1. Cell Res. 2016, 2016.
    • (2016) Cell Res. , pp. 2016
    • Lv, X.1
  • 133
    • 84963815169 scopus 로고    scopus 로고
    • RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins
    • Arora M., et al. RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins. Nucleic Acids Res. 2016, 44:2136-2144.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 2136-2144
    • Arora, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.