메뉴 건너뛰기




Volumn , Issue , 2016, Pages

From smart to deep: Robust activity recognition on smartwatches using deep learning

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL RESEARCH; HARDWARE; LEARNING SYSTEMS; PATTERN RECOGNITION; RECONFIGURABLE HARDWARE; SYSTEM-ON-CHIP; UBIQUITOUS COMPUTING;

EID: 84966565072     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PERCOMW.2016.7457169     Document Type: Conference Paper
Times cited : (153)

References (34)
  • 1
    • 84966666413 scopus 로고    scopus 로고
    • Hidden Markov Model Toolkit
    • Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk/.
  • 2
    • 84966566144 scopus 로고    scopus 로고
    • Torch. http://torch.ch/.
  • 3
    • 84966685124 scopus 로고    scopus 로고
    • Intel Edison
    • Intel Edison. https://software.intel.com/iot/hardware/edison.
  • 4
    • 84966625251 scopus 로고    scopus 로고
    • LG G Watch R
    • LG G Watch R. http://www.lg.com/mobile-phone-accessories/lg-W110.
  • 5
    • 84966625233 scopus 로고    scopus 로고
    • Qualcomm Snapdragon 400
    • Qualcomm Snapdragon 400. https://www.qualcomm.com/products/ snapdragon/processors/400.
  • 7
    • 84912150169 scopus 로고    scopus 로고
    • Using Unlabeled Data in A Sparse-coding Framework for Human Activity Recognition
    • S. Bhattacharya, P. Nurmi, N. Hammerla, T. Plötz. Using Unlabeled Data In A Sparse-coding Framework For Human Activity Recognition. PMC, 15:242-262, 2014.
    • (2014) PMC , vol.15 , pp. 242-262
    • Bhattacharya, S.1    Nurmi, P.2    Hammerla, N.3    Plötz, T.4
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Oct
    • L. Breiman. Random Forests. Mach. Learn., 45(1):5-32, Oct. 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 85075400122 scopus 로고    scopus 로고
    • Small-footprint keyword spotting using deep neural networks
    • G. Chen, C. Parada, G. Heigold. Small-footprint Keyword Spotting Using Deep Neural Networks. IEEE ICASSP'14.
    • IEEE ICASSP'14
    • Chen, G.1    Parada, C.2    Heigold, G.3
  • 10
    • 84964793469 scopus 로고    scopus 로고
    • Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • T. Chen, et al. Diannao: A Small-footprint High-throughput Accelerator For Ubiquitous Machine-learning. ASPLOS '14.
    • ASPLOS '14
    • Chen, T.1
  • 11
    • 42549108326 scopus 로고    scopus 로고
    • The mobile sensing platform: An embedded activity recognition system
    • T. Choudhury, et al. The Mobile Sensing Platform: An Embedded Activity Recognition System. Pervasive Computing, 7(2):32-41, 2008.
    • (2008) Pervasive Computing , vol.7 , Issue.2 , pp. 32-41
    • Choudhury, T.1
  • 15
    • 84961152068 scopus 로고    scopus 로고
    • PD disease state assessment in naturalistic environments using deep learning
    • N. Hammerla, et al. PD Disease State Assessment In Naturalistic Environments Using Deep Learning. AAAI '15.
    • AAAI '15
    • Hammerla, N.1
  • 16
    • 84867732862 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition
    • G. Hinton, et al. Deep Neural Networks For Acoustic Modeling In Speech Recognition. Signal Processing Magazine, 2012.
    • (2012) Signal Processing Magazine
    • Hinton, G.1
  • 18
    • 84958559567 scopus 로고    scopus 로고
    • ZOE: A cloud-less dialog-enabled continuous sensing wearable exploiting heterogeneous computation
    • N. Lane, P. Georgiev, C. Mascolo, Y. Gao. ZOE: A Cloud-less Dialog-enabled Continuous Sensing Wearable Exploiting Heterogeneous Computation. MobiSys '15.
    • MobiSys '15
    • Lane, N.1    Georgiev, P.2    Mascolo, C.3    Gao, Y.4
  • 19
    • 84960944045 scopus 로고    scopus 로고
    • DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning
    • N. Lane, P. Georgiev, L. Qendro. DeepEar: Robust Smartphone Audio Sensing In Unconstrained Acoustic Environments Using Deep Learning. UbiComp '15.
    • UbiComp '15
    • Lane, N.1    Georgiev, P.2    Qendro, L.3
  • 20
    • 84870491761 scopus 로고    scopus 로고
    • Enabling large-scale human activity inference on smartphones using community similarity networks (CSN)
    • N. Lane, et al. Enabling Large-scale Human Activity Inference On Smartphones Using Community Similarity Networks (CSN). UbiComp '11.
    • UbiComp '11
    • Lane, N.1
  • 21
    • 84881311778 scopus 로고    scopus 로고
    • A survey on human activity recognition using wearable sensors
    • O. D. Lara, M. A. Labrador. A Survey On Human Activity Recognition Using Wearable Sensors. IEEE Communications Surveys &Tutorials, 15(3):1192-1209, 2013.
    • (2013) IEEE Communications Surveys &Tutorials , vol.15 , Issue.3 , pp. 1192-1209
    • Lara, O.D.1    Labrador, M.A.2
  • 23
    • 84881185563 scopus 로고    scopus 로고
    • The jigsaw continuous sensing engine for mobile phone applications
    • H. Lu, et al. The JigSaw Continuous Sensing Engine For Mobile Phone Applications. SenSys '10.
    • SenSys '10
    • Lu, H.1
  • 24
    • 84881155894 scopus 로고    scopus 로고
    • Darwin phones: The evolution of sensing and inference on mobile phones
    • E. Miluzzo, et al. Darwin Phones: The Evolution Of Sensing And Inference On Mobile Phones. MobiSys '10.
    • MobiSys '10
    • Miluzzo, E.1
  • 25
    • 84881045411 scopus 로고    scopus 로고
    • Feature learning for activity recognition in ubiquitous computing
    • T. Plötz, N. Y. Hammerla, P. Olivier. Feature Learning For Activity Recognition In Ubiquitous Computing. IJCAI '11.
    • IJCAI '11
    • Plötz, T.1    Hammerla, N.Y.2    Olivier, P.3
  • 27
    • 84881121947 scopus 로고    scopus 로고
    • Emotionsense: A mobile phones based adaptive platform for experimental social psychology research
    • K. K. Rachuri, et al. Emotionsense: A Mobile Phones Based Adaptive Platform For Experimental Social Psychology Research. Ubicomp '10.
    • Ubicomp '10
    • Rachuri, K.K.1
  • 28
    • 85116178101 scopus 로고    scopus 로고
    • A semi-supervised learning approach for robust indoor-outdoor detection with smartphones
    • V. Radu, P. Katsikouli, R. Sarkar, M. K. Marina. A Semi-supervised Learning Approach For Robust Indoor-outdoor Detection With Smartphones. SenSys '14.
    • SenSys '14
    • Radu, V.1    Katsikouli, P.2    Sarkar, R.3    Marina, M.K.4
  • 29
    • 77749264950 scopus 로고    scopus 로고
    • Using Mobile Phones to Determine Transportation Modes
    • Mar
    • S. Reddy, et al. Using Mobile Phones To Determine Transportation Modes. ACM TOSN, 6(2):13:1-13:27, Mar. 2010.
    • (2010) ACM TOSN , vol.6 , Issue.2 , pp. 131-1327
    • Reddy, S.1
  • 30
    • 78149236604 scopus 로고    scopus 로고
    • Collecting complex activity datasets in highly rich networked sensor environments
    • D. Roggen, et al. Collecting Complex Activity Datasets In Highly Rich Networked Sensor Environments. INSS '10.
    • INSS '10
    • Roggen, D.1
  • 32
    • 85063736669 scopus 로고    scopus 로고
    • Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition
    • A. Stisen, et al. Smart Devices Are Different: assessing And Mitigating Mobile Sensing Heterogeneities For Activity Recognition. SenSys '15.
    • SenSys '15
    • Stisen, A.1
  • 33
    • 77954410768 scopus 로고    scopus 로고
    • Accelerometer-based transportation mode recognition on mobile phones
    • S. Wang, C. Chen, J. Ma. Accelerometer-based Transportation Mode Recognition On Mobile Phones. APWCS '10.
    • APWCS '10
    • Wang, S.1    Chen, C.2    Ma, J.3
  • 34
    • 84873418645 scopus 로고    scopus 로고
    • IODetector: A generic service for indoor outdoor detection
    • P. Zhou, et al. IODetector: A Generic Service For Indoor Outdoor Detection. SenSys '12.
    • SenSys '12
    • Zhou, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.