-
1
-
-
84966666413
-
-
Hidden Markov Model Toolkit
-
Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk/.
-
-
-
-
2
-
-
84966566144
-
-
Torch. http://torch.ch/.
-
-
-
-
3
-
-
84966685124
-
-
Intel Edison
-
Intel Edison. https://software.intel.com/iot/hardware/edison.
-
-
-
-
4
-
-
84966625251
-
-
LG G Watch R
-
LG G Watch R. http://www.lg.com/mobile-phone-accessories/lg-W110.
-
-
-
-
5
-
-
84966625233
-
-
Qualcomm Snapdragon 400
-
Qualcomm Snapdragon 400. https://www.qualcomm.com/products/ snapdragon/processors/400.
-
-
-
-
7
-
-
84912150169
-
Using Unlabeled Data in A Sparse-coding Framework for Human Activity Recognition
-
S. Bhattacharya, P. Nurmi, N. Hammerla, T. Plötz. Using Unlabeled Data In A Sparse-coding Framework For Human Activity Recognition. PMC, 15:242-262, 2014.
-
(2014)
PMC
, vol.15
, pp. 242-262
-
-
Bhattacharya, S.1
Nurmi, P.2
Hammerla, N.3
Plötz, T.4
-
8
-
-
0035478854
-
Random Forests
-
Oct
-
L. Breiman. Random Forests. Mach. Learn., 45(1):5-32, Oct. 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
85075400122
-
Small-footprint keyword spotting using deep neural networks
-
G. Chen, C. Parada, G. Heigold. Small-footprint Keyword Spotting Using Deep Neural Networks. IEEE ICASSP'14.
-
IEEE ICASSP'14
-
-
Chen, G.1
Parada, C.2
Heigold, G.3
-
10
-
-
84964793469
-
Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
-
T. Chen, et al. Diannao: A Small-footprint High-throughput Accelerator For Ubiquitous Machine-learning. ASPLOS '14.
-
ASPLOS '14
-
-
Chen, T.1
-
11
-
-
42549108326
-
The mobile sensing platform: An embedded activity recognition system
-
T. Choudhury, et al. The Mobile Sensing Platform: An Embedded Activity Recognition System. Pervasive Computing, 7(2):32-41, 2008.
-
(2008)
Pervasive Computing
, vol.7
, Issue.2
, pp. 32-41
-
-
Choudhury, T.1
-
15
-
-
84961152068
-
PD disease state assessment in naturalistic environments using deep learning
-
N. Hammerla, et al. PD Disease State Assessment In Naturalistic Environments Using Deep Learning. AAAI '15.
-
AAAI '15
-
-
Hammerla, N.1
-
16
-
-
84867732862
-
Deep neural networks for acoustic modeling in speech recognition
-
G. Hinton, et al. Deep Neural Networks For Acoustic Modeling In Speech Recognition. Signal Processing Magazine, 2012.
-
(2012)
Signal Processing Magazine
-
-
Hinton, G.1
-
18
-
-
84958559567
-
ZOE: A cloud-less dialog-enabled continuous sensing wearable exploiting heterogeneous computation
-
N. Lane, P. Georgiev, C. Mascolo, Y. Gao. ZOE: A Cloud-less Dialog-enabled Continuous Sensing Wearable Exploiting Heterogeneous Computation. MobiSys '15.
-
MobiSys '15
-
-
Lane, N.1
Georgiev, P.2
Mascolo, C.3
Gao, Y.4
-
19
-
-
84960944045
-
DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning
-
N. Lane, P. Georgiev, L. Qendro. DeepEar: Robust Smartphone Audio Sensing In Unconstrained Acoustic Environments Using Deep Learning. UbiComp '15.
-
UbiComp '15
-
-
Lane, N.1
Georgiev, P.2
Qendro, L.3
-
20
-
-
84870491761
-
Enabling large-scale human activity inference on smartphones using community similarity networks (CSN)
-
N. Lane, et al. Enabling Large-scale Human Activity Inference On Smartphones Using Community Similarity Networks (CSN). UbiComp '11.
-
UbiComp '11
-
-
Lane, N.1
-
21
-
-
84881311778
-
A survey on human activity recognition using wearable sensors
-
O. D. Lara, M. A. Labrador. A Survey On Human Activity Recognition Using Wearable Sensors. IEEE Communications Surveys &Tutorials, 15(3):1192-1209, 2013.
-
(2013)
IEEE Communications Surveys &Tutorials
, vol.15
, Issue.3
, pp. 1192-1209
-
-
Lara, O.D.1
Labrador, M.A.2
-
23
-
-
84881185563
-
The jigsaw continuous sensing engine for mobile phone applications
-
H. Lu, et al. The JigSaw Continuous Sensing Engine For Mobile Phone Applications. SenSys '10.
-
SenSys '10
-
-
Lu, H.1
-
24
-
-
84881155894
-
Darwin phones: The evolution of sensing and inference on mobile phones
-
E. Miluzzo, et al. Darwin Phones: The Evolution Of Sensing And Inference On Mobile Phones. MobiSys '10.
-
MobiSys '10
-
-
Miluzzo, E.1
-
25
-
-
84881045411
-
Feature learning for activity recognition in ubiquitous computing
-
T. Plötz, N. Y. Hammerla, P. Olivier. Feature Learning For Activity Recognition In Ubiquitous Computing. IJCAI '11.
-
IJCAI '11
-
-
Plötz, T.1
Hammerla, N.Y.2
Olivier, P.3
-
26
-
-
84885220838
-
Activity recognition and healthier food preparation
-
T. Plötz, P. Moynihan, C. Pham, P. Olivier. Activity Recognition And Healthier Food Preparation. Activity Recognition in Pervasive Intelligent Environments, pages 313-329, 2010.
-
(2010)
Activity Recognition in Pervasive Intelligent Environments
, pp. 313-329
-
-
Plötz, T.1
Moynihan, P.2
Pham, C.3
Olivier, P.4
-
27
-
-
84881121947
-
Emotionsense: A mobile phones based adaptive platform for experimental social psychology research
-
K. K. Rachuri, et al. Emotionsense: A Mobile Phones Based Adaptive Platform For Experimental Social Psychology Research. Ubicomp '10.
-
Ubicomp '10
-
-
Rachuri, K.K.1
-
28
-
-
85116178101
-
A semi-supervised learning approach for robust indoor-outdoor detection with smartphones
-
V. Radu, P. Katsikouli, R. Sarkar, M. K. Marina. A Semi-supervised Learning Approach For Robust Indoor-outdoor Detection With Smartphones. SenSys '14.
-
SenSys '14
-
-
Radu, V.1
Katsikouli, P.2
Sarkar, R.3
Marina, M.K.4
-
29
-
-
77749264950
-
Using Mobile Phones to Determine Transportation Modes
-
Mar
-
S. Reddy, et al. Using Mobile Phones To Determine Transportation Modes. ACM TOSN, 6(2):13:1-13:27, Mar. 2010.
-
(2010)
ACM TOSN
, vol.6
, Issue.2
, pp. 131-1327
-
-
Reddy, S.1
-
30
-
-
78149236604
-
Collecting complex activity datasets in highly rich networked sensor environments
-
D. Roggen, et al. Collecting Complex Activity Datasets In Highly Rich Networked Sensor Environments. INSS '10.
-
INSS '10
-
-
Roggen, D.1
-
32
-
-
85063736669
-
Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition
-
A. Stisen, et al. Smart Devices Are Different: assessing And Mitigating Mobile Sensing Heterogeneities For Activity Recognition. SenSys '15.
-
SenSys '15
-
-
Stisen, A.1
-
33
-
-
77954410768
-
Accelerometer-based transportation mode recognition on mobile phones
-
S. Wang, C. Chen, J. Ma. Accelerometer-based Transportation Mode Recognition On Mobile Phones. APWCS '10.
-
APWCS '10
-
-
Wang, S.1
Chen, C.2
Ma, J.3
-
34
-
-
84873418645
-
IODetector: A generic service for indoor outdoor detection
-
P. Zhou, et al. IODetector: A Generic Service For Indoor Outdoor Detection. SenSys '12.
-
SenSys '12
-
-
Zhou, P.1
|