-
1
-
-
78651481099
-
Graphene edges: A review of their fabrication and characterization
-
X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M.S. Dresselhaus Graphene edges: a review of their fabrication and characterization Nanoscale 3 2011 86 95
-
(2011)
Nanoscale
, vol.3
, pp. 86-95
-
-
Jia, X.1
Campos-Delgado, J.2
Terrones, M.3
Meunier, V.4
Dresselhaus, M.S.5
-
2
-
-
84904730172
-
Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon
-
C. Han, M.-Q. Yang, B. Weng, and Y.-J. Xu Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon Phys. Chem. Chem. Phys. 16 2014 16891 16903
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 16891-16903
-
-
Han, C.1
Yang, M.-Q.2
Weng, B.3
Xu, Y.-J.4
-
4
-
-
80053325435
-
2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube?
-
2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5 2011 7426 7435
-
(2011)
ACS Nano
, vol.5
, pp. 7426-7435
-
-
Zhang, Y.1
Tang, Z.-R.2
Fu, X.3
Xu, Y.-J.4
-
5
-
-
84901751986
-
Integrated graphene/nanoparticle hybrids for biological and electronic applications
-
K.T. Nguyen, and Y. Zhao Integrated graphene/nanoparticle hybrids for biological and electronic applications Nanoscale 6 2014 6245 6266
-
(2014)
Nanoscale
, vol.6
, pp. 6245-6266
-
-
Nguyen, K.T.1
Zhao, Y.2
-
7
-
-
84891882745
-
Graphene-based materials for solar cell applications
-
Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, and H. Zhang Graphene-based materials for solar cell applications Adv. Energy Mater. 4 2014 1300574
-
(2014)
Adv. Energy Mater.
, vol.4
-
-
Yin, Z.1
Zhu, J.2
He, Q.3
Cao, X.4
Tan, C.5
Chen, H.6
Yan, Q.7
Zhang, H.8
-
8
-
-
84869192722
-
Graphene oxide: Preparation, functionalization, and electrochemical applications
-
D. Chen, H. Feng, and J. Li Graphene oxide: preparation, functionalization, and electrochemical applications Chem. Rev. 112 2012 6027 6053
-
(2012)
Chem. Rev.
, vol.112
, pp. 6027-6053
-
-
Chen, D.1
Feng, H.2
Li, J.3
-
9
-
-
84904552007
-
Chemistry with graphene and graphene oxide - Challenges for synthetic chemists
-
S. Eigler, and A. Hirsch Chemistry with graphene and graphene oxide - challenges for synthetic chemists Angew. Chem. Int. Ed. 53 2014 7720 7738
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 7720-7738
-
-
Eigler, S.1
Hirsch, A.2
-
10
-
-
84926442680
-
Tunable graphene oxide proton/electron mixed conductor that functions at room temperature
-
K. Hatakeyama, H. Tateishi, T. Taniguchi, M. Koinuma, T. Kida, S. Hayami, H. Yokoi, and Y. Matsumoto Tunable graphene oxide proton/electron mixed conductor that functions at room temperature Chem. Mater. 26 2014 5598 5604
-
(2014)
Chem. Mater.
, vol.26
, pp. 5598-5604
-
-
Hatakeyama, K.1
Tateishi, H.2
Taniguchi, T.3
Koinuma, M.4
Kida, T.5
Hayami, S.6
Yokoi, H.7
Matsumoto, Y.8
-
11
-
-
84868699299
-
Graphene: An emerging electronic material
-
N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan Graphene: An emerging electronic material Adv. Mater. 24 2012 5776
-
(2012)
Adv. Mater.
, vol.24
, pp. 5776
-
-
Weiss, N.O.1
Zhou, H.2
Liao, L.3
Liu, Y.4
Jiang, S.5
Huang, Y.6
Duan, X.7
-
13
-
-
84923376707
-
Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites
-
A. Kafy, K.K. Sadasivuni, H.C. Kim, A. Akther, and J. Kim Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites Phys. Chem. Chem. Phys. 2015
-
(2015)
Phys. Chem. Chem. Phys.
-
-
Kafy, A.1
Sadasivuni, K.K.2
Kim, H.C.3
Akther, A.4
Kim, J.5
-
14
-
-
84880133779
-
Biomedical applications of graphene and graphene oxide
-
C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, and D.-H. Min Biomedical applications of graphene and graphene oxide Acc. Chem. Res. 46 2013 2211 2224
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 2211-2224
-
-
Chung, C.1
Kim, Y.-K.2
Shin, D.3
Ryoo, S.-R.4
Hong, B.H.5
Min, D.-H.6
-
15
-
-
79953657081
-
Graphene based new energy materials
-
Y. Sun, Q. Wu, and G. Shi Graphene based new energy materials Energy Environ. Sci. 4 2011 1113 1132
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1113-1132
-
-
Sun, Y.1
Wu, Q.2
Shi, G.3
-
16
-
-
79959788241
-
Graphene-based materials: Synthesis, characterization, properties, and applications
-
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang Graphene-based materials: synthesis, characterization, properties, and applications Small 7 2011 1876 1902
-
(2011)
Small
, vol.7
, pp. 1876-1902
-
-
Huang, X.1
Yin, Z.2
Wu, S.3
Qi, X.4
He, Q.5
Zhang, Q.6
Yan, Q.7
Boey, F.8
Zhang, H.9
-
17
-
-
84942333153
-
Waltzing with the versatile platform of graphene to synthesize composite photocatalysts
-
N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, and Y.-J. Xu Waltzing with the versatile platform of graphene to synthesize composite photocatalysts Chem. Rev. 115 2015 10307 10377
-
(2015)
Chem. Rev.
, vol.115
, pp. 10307-10377
-
-
Zhang, N.1
Yang, M.-Q.2
Liu, S.3
Sun, Y.4
Xu, Y.-J.5
-
18
-
-
84907936664
-
Artificial photosynthesis over graphene-semiconductor composites. Are we getting better?
-
M.-Q. Yang, N. Zhang, M. Pagliaro, and Y.-J. Xu Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43 2014 8240 8254
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 8240-8254
-
-
Yang, M.-Q.1
Zhang, N.2
Pagliaro, M.3
Xu, Y.-J.4
-
19
-
-
84870402077
-
Recent progress on graphene-based photocatalysts: Current status and future perspectives
-
N. Zhang, Y. Zhang, and Y.-J. Xu Recent progress on graphene-based photocatalysts: current status and future perspectives Nanoscale 4 2012 5792 5813
-
(2012)
Nanoscale
, vol.4
, pp. 5792-5813
-
-
Zhang, N.1
Zhang, Y.2
Xu, Y.-J.3
-
20
-
-
84886793302
-
Selective photoredox using graphene-based composite photocatalysts
-
M.-Q. Yang, and Y.-J. Xu Selective photoredox using graphene-based composite photocatalysts Phys. Chem. Chem. Phys. 15 2013 19102 19118
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 19102-19118
-
-
Yang, M.-Q.1
Xu, Y.-J.2
-
22
-
-
84877759923
-
Progress, challenge and perspective of heterogeneous photocatalysts
-
Y. Qu, and X. Duan Progress, challenge and perspective of heterogeneous photocatalysts Chem. Soc. Rev. 42 2013 2568 2580
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2568-2580
-
-
Qu, Y.1
Duan, X.2
-
23
-
-
84870406684
-
Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer
-
Y. Zhang, N. Zhang, Z.-R. Tang, and Y.-J. Xu Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer Acs Nano 6 2012 9777 9789
-
(2012)
Acs Nano
, vol.6
, pp. 9777-9789
-
-
Zhang, Y.1
Zhang, N.2
Tang, Z.-R.3
Xu, Y.-J.4
-
24
-
-
84893502195
-
Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator
-
N. Zhang, M.-Q. Yang, Z.-R. Tang, and Y.-J. Xu Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator ACS Nano 8 2013 623 633
-
(2013)
ACS Nano
, vol.8
, pp. 623-633
-
-
Zhang, N.1
Yang, M.-Q.2
Tang, Z.-R.3
Xu, Y.-J.4
-
25
-
-
84961288015
-
Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance
-
C. Han, Z. Chen, N. Zhang, J.C. Colmenares, and Y.J. Xu Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance Adv. Funct. Mater. 25 2015 221 229
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 221-229
-
-
Han, C.1
Chen, Z.2
Zhang, N.3
Colmenares, J.C.4
Xu, Y.J.5
-
26
-
-
0035311846
-
Specific surface area of carbon nanotubes and bundles of carbon nanotubes
-
A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset Specific surface area of carbon nanotubes and bundles of carbon nanotubes Carbon 39 2001 507 514
-
(2001)
Carbon
, vol.39
, pp. 507-514
-
-
Peigney, A.1
Laurent, C.2
Flahaut, E.3
Bacsa, R.R.4
Rousset, A.5
-
27
-
-
67749095022
-
Langmuir-Blodgett assembly of graphite oxide single layers
-
L.J. Cote, F. Kim, and J. Huang Langmuir-Blodgett assembly of graphite oxide single layers J. Am. Chem. Soc. 131 2009 1043 1049
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 1043-1049
-
-
Cote, L.J.1
Kim, F.2
Huang, J.3
-
28
-
-
36749022186
-
A Chemical route to graphene for device applications
-
S. Gilje, S. Han, M. Wang, K.L. Wang, and R.B. Kaner A Chemical route to graphene for device applications Nano Lett. 7 2007 3394 3398
-
(2007)
Nano Lett.
, vol.7
, pp. 3394-3398
-
-
Gilje, S.1
Han, S.2
Wang, M.3
Wang, K.L.4
Kaner, R.B.5
-
29
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide Carbon 45 2007 1558 1565
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
33
-
-
76249106647
-
Reduction of graphene oxide vial-ascorbic acid
-
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo Reduction of graphene oxide vial-ascorbic acid Chem. Commun. 46 2010 1112 1114
-
(2010)
Chem. Commun.
, vol.46
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Zhang, J.5
Guo, S.6
-
34
-
-
84872736838
-
Atomic covalent functionalization of graphene
-
J.E. Johns, and M.C. Hersam Atomic covalent functionalization of graphene Acc. Chem. Res. 46 2013 77 86
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 77-86
-
-
Johns, J.E.1
Hersam, M.C.2
-
35
-
-
84875859546
-
Semiconducting graphene: Converting graphene from semimetal to semiconductor
-
G. Lu, K. Yu, Z. Wen, and J. Chen Semiconducting graphene: converting graphene from semimetal to semiconductor Nanoscale 5 2013 1353 1368
-
(2013)
Nanoscale
, vol.5
, pp. 1353-1368
-
-
Lu, G.1
Yu, K.2
Wen, Z.3
Chen, J.4
-
36
-
-
63749101027
-
Tailoring the characteristics of graphite oxides by different oxidation times
-
H. Jeong, M. Jin, K. So, S. Lim, and Y. Lee Tailoring the characteristics of graphite oxides by different oxidation times J. Phys. D: Appl. Phys. 42 2009 065418
-
(2009)
J. Phys. D: Appl. Phys.
, vol.42
-
-
Jeong, H.1
Jin, M.2
So, K.3
Lim, S.4
Lee, Y.5
-
38
-
-
45149101884
-
Semiconducting nature of the oxygen-adsorbed graphene sheet
-
J. Ito, J. Nakamura, and A. Natori Semiconducting nature of the oxygen-adsorbed graphene sheet J. Appl. Phys. 103 2008 113712
-
(2008)
J. Appl. Phys.
, vol.103
-
-
Ito, J.1
Nakamura, J.2
Natori, A.3
-
39
-
-
77958483742
-
Bandgap opening in oxygen plasma-treated graphene
-
A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M.H. van der Veen, J. Hofkens, M.M. Heyns, S. De Gendt, and B.F. Sels Bandgap opening in oxygen plasma-treated graphene Nanotechnology 21 2010 435203
-
(2010)
Nanotechnology
, vol.21
-
-
Nourbakhsh, A.1
Cantoro, M.2
Vosch, T.3
Pourtois, G.4
Clemente, F.5
Van Der Veen, M.H.6
Hofkens, J.7
Heyns, M.M.8
De Gendt, S.9
Sels, B.F.10
-
40
-
-
84858972242
-
Oxygen density dependent band gap of reduced graphene oxide
-
H. Huang, Z. Li, J. She, and W. Wang Oxygen density dependent band gap of reduced graphene oxide J. Appl. Phys. 111 2012 054317
-
(2012)
J. Appl. Phys.
, vol.111
-
-
Huang, H.1
Li, Z.2
She, J.3
Wang, W.4
-
41
-
-
84860180777
-
Controlled, stepwise reduction and band gap manipulation of graphene oxide
-
A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P.M. Ajayan Controlled, stepwise reduction and band gap manipulation of graphene oxide J. Phys. Chem. Lett. 3 2012 986 991
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 986-991
-
-
Mathkar, A.1
Tozier, D.2
Cox, P.3
Ong, P.4
Galande, C.5
Balakrishnan, K.6
Leela Mohana Reddy, A.7
Ajayan, P.M.8
-
42
-
-
63049134883
-
Photoluminescence and band gap modulation in graphene oxide
-
Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, and J.M. Kikkawa Photoluminescence and band gap modulation in graphene oxide Appl. Phys. Lett. 94 2009 111909
-
(2009)
Appl. Phys. Lett.
, vol.94
-
-
Luo, Z.1
Vora, P.M.2
Mele, E.J.3
Johnson, A.T.C.4
Kikkawa, J.M.5
-
43
-
-
77955356920
-
Graphite oxide as a photocatalyst for hydrogen production from water
-
T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng Graphite oxide as a photocatalyst for hydrogen production from water Adv. Funct. Mater. 20 2010 2255 2262
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 2255-2262
-
-
Yeh, T.-F.1
Syu, J.-M.2
Cheng, C.3
Chang, T.-H.4
Teng, H.5
-
44
-
-
76649134436
-
Blue photoluminescence from chemically derived graphene oxide
-
G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.S. Chen, C.-W. Chen, and M. Chhowalla Blue photoluminescence from chemically derived graphene oxide Adv. Mater. 22 2010 505 509
-
(2010)
Adv. Mater.
, vol.22
, pp. 505-509
-
-
Eda, G.1
Lin, Y.-Y.2
Mattevi, C.3
Yamaguchi, H.4
Chen, H.-A.5
Chen, I.S.6
Chen, C.-W.7
Chhowalla, M.8
-
45
-
-
43449107662
-
Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
-
G. Eda, G. Fanchini, and M. Chhowalla Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material Nat. Nanotechnol. 3 2008 270 274
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 270-274
-
-
Eda, G.1
Fanchini, G.2
Chhowalla, M.3
-
46
-
-
0032068758
-
Nature of disorder and localization in amorphous carbon
-
C.W. Chen, and J. Robertson Nature of disorder and localization in amorphous carbon J. Non Cryst. Solids 227-230 1998 602 606 (Part 1)
-
(1998)
J. Non Cryst. Solids
, vol.227-230
, pp. 602-606
-
-
Chen, C.W.1
Robertson, J.2
-
48
-
-
68249146209
-
Photoconductivity of bulk-film-based graphene sheets
-
X. Lv, Y. Huang, Z. Liu, J. Tian, Y. Wang, Y. Ma, J. Liang, S. Fu, X. Wan, and Y. Chen Photoconductivity of bulk-film-based graphene sheets Small 5 2009 1682 1687
-
(2009)
Small
, vol.5
, pp. 1682-1687
-
-
Lv, X.1
Huang, Y.2
Liu, Z.3
Tian, J.4
Wang, Y.5
Ma, Y.6
Liang, J.7
Fu, S.8
Wan, X.9
Chen, Y.10
-
49
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim Fine structure constant defines visual transparency of graphene Science 320 2008 1308
-
(2008)
Science
, vol.320
, pp. 1308
-
-
Nair, R.R.1
Blake, P.2
Grigorenko, A.N.3
Novoselov, K.S.4
Booth, T.J.5
Stauber, T.6
Peres, N.M.R.7
Geim, A.K.8
-
50
-
-
75749138138
-
P25-graphene composite as a high performance photocatalyst
-
H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li P25-graphene composite as a high performance photocatalyst ACS Nano 4 2009 380 386
-
(2009)
ACS Nano
, vol.4
, pp. 380-386
-
-
Zhang, H.1
Lv, X.2
Li, Y.3
Wang, Y.4
Li, J.5
-
51
-
-
78650304954
-
Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study
-
T. Xu, L. Zhang, H. Cheng, and Y. Zhu Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study Appl. Catal. B 101 2011 382 387
-
(2011)
Appl. Catal. B
, vol.101
, pp. 382-387
-
-
Xu, T.1
Zhang, L.2
Cheng, H.3
Zhu, Y.4
-
52
-
-
79959877571
-
Graphene sheets grafted Ag@ AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light
-
H. Zhang, X. Fan, X. Quan, S. Chen, and H. Yu Graphene sheets grafted Ag@ AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light Environ. Sci. Technol. 45 2011 5731 5736
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 5731-5736
-
-
Zhang, H.1
Fan, X.2
Quan, X.3
Chen, S.4
Yu, H.5
-
53
-
-
84860717361
-
ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance
-
B. Li, T. Liu, Y. Wang, and Z. Wang ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance J. Colloid Interface Sci. 377 2012 114 121
-
(2012)
J. Colloid Interface Sci.
, vol.377
, pp. 114-121
-
-
Li, B.1
Liu, T.2
Wang, Y.3
Wang, Z.4
-
54
-
-
82955190404
-
Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials
-
L. Yan, Y.B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P.S. Weiss, and Y. Zhao Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials Chem. Soc. Rev. 41 2012 97 114
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 97-114
-
-
Yan, L.1
Zheng, Y.B.2
Zhao, F.3
Li, S.4
Gao, X.5
Xu, B.6
Weiss, P.S.7
Zhao, Y.8
-
55
-
-
77949344390
-
All-organic vapor sensor using inkjet-printed reduced graphene oxide
-
V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, and S.K. Manohar All-organic vapor sensor using inkjet-printed reduced graphene oxide Angew. Chem. Int. Ed. 49 2010 2154 2157
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2154-2157
-
-
Dua, V.1
Surwade, S.P.2
Ammu, S.3
Agnihotra, S.R.4
Jain, S.5
Roberts, K.E.6
Park, S.7
Ruoff, R.S.8
Manohar, S.K.9
-
56
-
-
56149105109
-
Reduced graphene oxide molecular sensors
-
J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan Reduced graphene oxide molecular sensors Nano Lett. 8 2008 3137 3140
-
(2008)
Nano Lett.
, vol.8
, pp. 3137-3140
-
-
Robinson, J.T.1
Perkins, F.K.2
Snow, E.S.3
Wei, Z.4
Sheehan, P.E.5
-
57
-
-
78649684459
-
Tunable bandgap in graphene by the controlled adsorption of water molecules
-
F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, and N. Koratkar Tunable bandgap in graphene by the controlled adsorption of water molecules Small 6 2010 2535 2538
-
(2010)
Small
, vol.6
, pp. 2535-2538
-
-
Yavari, F.1
Kritzinger, C.2
Gaire, C.3
Song, L.4
Gulapalli, H.5
Borca-Tasciuc, T.6
Ajayan, P.M.7
Koratkar, N.8
-
58
-
-
69649094607
-
Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation
-
G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation Carbon 47 2009 3242 3246
-
(2009)
Carbon
, vol.47
, pp. 3242-3246
-
-
Wang, G.1
Wang, B.2
Park, J.3
Wang, Y.4
Sun, B.5
Yao, J.6
-
59
-
-
77951031178
-
Atomic structure of reduced graphene oxide
-
C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser Atomic structure of reduced graphene oxide Nano Lett. 10 2010 1144 1148
-
(2010)
Nano Lett.
, vol.10
, pp. 1144-1148
-
-
Gómez-Navarro, C.1
Meyer, J.C.2
Sundaram, R.S.3
Chuvilin, A.4
Kurasch, S.5
Burghard, M.6
Kern, K.7
Kaiser, U.8
-
60
-
-
84861595396
-
Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides
-
A. Dhakshinamoorthy, M. Alvaro, P. Concepcion, V. Fornes, and H. Garcia Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides Chem. Commun. 48 2012 5443 5445
-
(2012)
Chem. Commun.
, vol.48
, pp. 5443-5445
-
-
Dhakshinamoorthy, A.1
Alvaro, M.2
Concepcion, P.3
Fornes, V.4
Garcia, H.5
-
61
-
-
84871786367
-
Probing the catalytic activity of porous graphene oxide and the origin of this behaviour
-
C. Su, M. Acik, K. Takai, J. Lu, S.-j. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, and K. Ping Loh Probing the catalytic activity of porous graphene oxide and the origin of this behaviour Nat. Commun. 3 2012 1298
-
(2012)
Nat. Commun.
, vol.3
, pp. 1298
-
-
Su, C.1
Acik, M.2
Takai, K.3
Lu, J.4
Hao, S.-J.5
Zheng, Y.6
Wu, P.7
Bao, Q.8
Enoki, T.9
Chabal, Y.J.10
Ping Loh, K.11
-
62
-
-
84890286078
-
Probing the influence of different oxygenated groups on graphene oxide's catalytic performance
-
X.-k. Kong, Q.-w. Chen, and Z.-y. Lun Probing the influence of different oxygenated groups on graphene oxide's catalytic performance J. Mater. Chem. A 2 2014 610 613
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 610-613
-
-
Kong, X.-K.1
Chen, Q.-W.2
Lun, Z.-Y.3
-
63
-
-
84870206663
-
Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane
-
S. Tang, and Z. Cao Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane Phys. Chem. Chem. Phys. 14 2012 16558 16565
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 16558-16565
-
-
Tang, S.1
Cao, Z.2
-
64
-
-
79955739812
-
The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites
-
T.-D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim, and S.H. Hur The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites Chem. Eng. J. 170 2011 226 232
-
(2011)
Chem. Eng. J.
, vol.170
, pp. 226-232
-
-
Nguyen-Phan, T.-D.1
Pham, V.H.2
Shin, E.W.3
Pham, H.-D.4
Kim, S.5
Chung, J.S.6
Kim, E.J.7
Hur, S.H.8
-
65
-
-
84896029246
-
Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels
-
S. Thangavel, and G. Venugopal Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels Powder Technol. 257 2014 141 148
-
(2014)
Powder Technol.
, vol.257
, pp. 141-148
-
-
Thangavel, S.1
Venugopal, G.2
-
66
-
-
34247602049
-
Intercalation of solid polymer electrolytes into graphite oxide
-
R. Bissessur, and S.F. Scully Intercalation of solid polymer electrolytes into graphite oxide Solid State Ionics 178 2007 877 882
-
(2007)
Solid State Ionics
, vol.178
, pp. 877-882
-
-
Bissessur, R.1
Scully, S.F.2
-
67
-
-
77950240993
-
Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials
-
O.C. Compton, and S.T. Nguyen Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials Small 6 2010 711 723
-
(2010)
Small
, vol.6
, pp. 711-723
-
-
Compton, O.C.1
Nguyen, S.T.2
-
70
-
-
0037214238
-
2 adsorption on carbonaceous surfaces: A combined experimental and theoretical study
-
2 adsorption on carbonaceous surfaces: a combined experimental and theoretical study Carbon 41 2003 29 39
-
(2003)
Carbon
, vol.41
, pp. 29-39
-
-
Montoya, A.1
Mondragon, F.2
Truong, T.N.3
-
71
-
-
84864833478
-
Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study
-
B.C. Wood, S.Y. Bhide, D. Dutta, V.S. Kandagal, A.D. Pathak, S.N. Punnathanam, K. Ayappa, and S. Narasimhan Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study J. Chem. Phys. 137 2012 054702
-
(2012)
J. Chem. Phys.
, vol.137
-
-
Wood, B.C.1
Bhide, S.Y.2
Dutta, D.3
Kandagal, V.S.4
Pathak, A.D.5
Punnathanam, S.N.6
Ayappa, K.7
Narasimhan, S.8
-
72
-
-
84870904362
-
2 to methanol conversion
-
2 to methanol conversion Nanoscale 5 2013 262 268
-
(2013)
Nanoscale
, vol.5
, pp. 262-268
-
-
Hsu, H.-C.1
Shown, I.2
Wei, H.-Y.3
Chang, Y.-C.4
Du, H.-Y.5
Lin, Y.-G.6
Tseng, C.-A.7
Wang, C.-H.8
Chen, L.-C.9
Lin, Y.-C.10
-
74
-
-
80053464045
-
Photoreaction of graphene oxide nanosheets in water
-
Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe, and S. Amano Photoreaction of graphene oxide nanosheets in water J. Phys. Chem. C 115 2011 19280 19286
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 19280-19286
-
-
Matsumoto, Y.1
Koinuma, M.2
Ida, S.3
Hayami, S.4
Taniguchi, T.5
Hatakeyama, K.6
Tateishi, H.7
Watanabe, Y.8
Amano, S.9
-
75
-
-
77953494810
-
Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics
-
G. Eda, and M. Chhowalla Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics Adv. Mater. 22 2010 2392 2415
-
(2010)
Adv. Mater.
, vol.22
, pp. 2392-2415
-
-
Eda, G.1
Chhowalla, M.2
-
76
-
-
84870904362
-
2 to methanol conversion
-
2 to methanol conversion Nanoscale 5 2013 262 268
-
(2013)
Nanoscale
, vol.5
, pp. 262-268
-
-
Hsu, H.-C.1
Shown, I.2
Wei, H.-Y.3
Chang, Y.-C.4
Du, H.-Y.5
Lin, Y.-G.6
Tseng, C.-A.7
Wang, C.-H.8
Chen, L.-C.9
Lin, Y.-C.10
Chen, K.-H.11
-
77
-
-
80955163953
-
Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: The band positions of graphite oxide
-
T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide J. Phys. Chem. C 115 2011 22587 22597
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 22587-22597
-
-
Yeh, T.-F.1
Chan, F.-F.2
Hsieh, C.-T.3
Teng, H.4
-
78
-
-
84886017385
-
Carbocatalysts: Graphene oxide and its derivatives
-
C. Su, and K.P. Loh Carbocatalysts: graphene oxide and its derivatives Acc. Chem. Res. 46 2013 2275 2285
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 2275-2285
-
-
Su, C.1
Loh, K.P.2
-
79
-
-
45149118399
-
Zigzag graphene nanoribbons with saturated edges
-
K.N. Kudin Zigzag graphene nanoribbons with saturated edges ACS Nano 2 2008 516 522
-
(2008)
ACS Nano
, vol.2
, pp. 516-522
-
-
Kudin, K.N.1
-
81
-
-
84937801504
-
Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane
-
W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, and A.R. Mohamed Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane Nano Energy 13 2015 757 770
-
(2015)
Nano Energy
, vol.13
, pp. 757-770
-
-
Ong, W.-J.1
Tan, L.-L.2
Chai, S.-P.3
Yong, S.-T.4
Mohamed, A.R.5
-
82
-
-
84966447697
-
Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?
-
W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, and S.-P. Chai Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016 10.1021/acs.chemrev.6b00075
-
(2016)
Chem. Rev.
-
-
Ong, W.-J.1
Tan, L.-L.2
Ng, Y.H.3
Yong, S.-T.4
Chai, S.-P.5
|