-
1
-
-
0000026159
-
The relaxation method for linear inequalities
-
S. Agmon, The relaxation method for linear inequalities, Cañad. J. Math. 6 (1954), 382-392. 16-18.
-
(1954)
Cañad. J. Math
, vol.6
, Issue.16-18
, pp. 382-392
-
-
Agmon, S.1
-
2
-
-
57149136888
-
The solution by iteration of nonlinear functional equations in Banach spaces
-
MR 32 #8155b
-
F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. MR 32 #8155b.
-
(1966)
Bull. Amer. Math. Soc
, vol.72
, pp. 571-575
-
-
Browder, F.E.1
Petryshyn, W.V.2
-
4
-
-
84966229553
-
ApproximationsT
-
MR 38 #2644
-
approximationsT, rans. Amer. Math. Soc. 135 (1969),459-485. MR 38 #2644.
-
(1969)
Rans. Amer. Math. Soc
, vol.135
, pp. 459-485
-
-
-
5
-
-
0002364055
-
On the Mann iterative process
-
MR 41 #2477
-
W. G. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970), 65-73. MR 41 #2477.
-
(1970)
Trans. Amer. Math. Soc
, vol.149
, pp. 65-73
-
-
Dotson, W.G.1
-
6
-
-
25444442648
-
The generalization of the relaxation method of Motzkin and Agmon
-
Russian) MR 34 #2342
-
I. I. Eremin, The generalization of the relaxation method of Motzkin and Agmon, Uspehi Mat. Nauk 20 (1965), no. 2, 183-187. (Russian) MR 34 #2342.
-
(1965)
Uspehi Mat. Nauk
, vol.20
, Issue.2
, pp. 183-187
-
-
Eremin, I.I.1
-
7
-
-
0000026160
-
The relaxation method for linear inequalities
-
T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear inequalities, Cañad. J. Math. 6 (1954), 393404. 16, 18.
-
(1954)
Cañad. J. Math
, vol.6-16
, pp. 393-404
-
-
Motzkin, T.S.1
Schoenberg, I.J.2
-
8
-
-
84972502982
-
Mean value iteration of nonexpansive mappings in a Banach space
-
MR 40 #807
-
C. Outlaw, Mean value iteration of nonexpansive mappings in a Banach space, Pacific J. Math. 30 (1969), 747-750. MR 40 #807.
-
(1969)
Pacific J. Math
, vol.30
, pp. 747-750
-
-
Outlaw, C.1
-
9
-
-
0000824964
-
Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings
-
MR 48 #4854
-
W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497. MR 48 #4854.
-
(1973)
J. Math. Anal. Appl
, vol.43
, pp. 459-497
-
-
Petryshyn, W.V.1
Williamson, T.E.2
-
10
-
-
0012953489
-
Über die Methode sukzessiver Approximationen
-
MR 18, 811
-
H. Schaefer, Über die Methode sukzessiver Approximationen, Jber Deutsch. Math. Verein. 59 (1957), 131-140. MR 18, 811.
-
(1957)
Jber Deutsch. Math. Verein
, vol.59
, pp. 131-140
-
-
Schaefer, H.1
-
11
-
-
84968519140
-
Approximating fixed points of nonexpansive mappings
-
M R 49 #11333
-
H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974),375-380.M R 49 #11333.
-
(1974)
Proc. Amer. Math. Soc
, vol.44
, pp. 375-380
-
-
Senter, H.F.1
Dotson, W.G.2
|