메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 370-378

Synaptic sampling: A Bayesian approach to neural network plasticity and rewiring

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; INFORMATION SCIENCE; MAXIMUM LIKELIHOOD; NEURAL NETWORKS;

EID: 84965179942     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (29)
  • 4
    • 85162329166 scopus 로고    scopus 로고
    • Sequence learning with hidden units in spiking neural networks
    • Brea J, Senn W, Pfister JP. Sequence learning with hidden units in spiking neural networks. In: NIPS. vol. 24; 2011. p. 1422-1430.
    • (2011) NIPS , vol.24 , pp. 1422-1430
    • Brea, J.1    Senn, W.2    Pfister, J.P.3
  • 6
    • 79955090327 scopus 로고    scopus 로고
    • STDP enables spiking neurons to detect hidden causes of their inputs
    • Nessler B, Pfeiffer M, Maass W. STDP enables spiking neurons to detect hidden causes of their inputs. In: NIPS. vol. 22; 2009. p. 1357-1365.
    • (2009) NIPS , vol.22 , pp. 1357-1365
    • Nessler, B.1    Pfeiffer, M.2    Maass, W.3
  • 7
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay DJ. Bayesian interpolation. Neural Computation. 1992;4(3):415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.1
  • 10
    • 79959927449 scopus 로고    scopus 로고
    • Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo
    • Loewenstein Y, Kuras A, Rumpel S. Multiplicative dynamics underlie the emergence of the log-normal distribution of spine sizes in the neocortex in vivo. J Neurosci. 2011;31(26):9481-9488.
    • (2011) J Neurosci. , vol.31 , Issue.26 , pp. 9481-9488
    • Loewenstein, Y.1    Kuras, A.2    Rumpel, S.3
  • 11
    • 80053141839 scopus 로고    scopus 로고
    • Variability, compensation and modulation in neurons and circuits
    • Marder E. Variability, compensation and modulation in neurons and circuits. PNAS. 2011;108(3):15542-15548.
    • (2011) PNAS , vol.108 , Issue.3 , pp. 15542-15548
    • Marder, E.1
  • 14
    • 84932199211 scopus 로고    scopus 로고
    • Approximation analysis of stochastic gradient langevin dynamics by using fokkerplanck equation and ito process
    • Sato I, Nakagawa H. Approximation analysis of stochastic gradient langevin dynamics by using fokkerplanck equation and ito process. In: NIPS; 2014. p. 982-990.
    • (2014) NIPS , pp. 982-990
    • Sato, I.1    Nakagawa, H.2
  • 15
    • 84897460337 scopus 로고    scopus 로고
    • STDP installs in winner-take-all circuits an online approximation to hidden Markov model learning
    • Kappel D, Nessler B, Maass W. STDP installs in winner-take-all circuits an online approximation to hidden Markov model learning. PLoS Comp Biol. 2014;10(3):e1003511.
    • (2014) PLoS Comp Biol. , vol.10 , Issue.3 , pp. e1003511
    • Kappel, D.1    Nessler, B.2    Maass, W.3
  • 16
    • 33745833056 scopus 로고    scopus 로고
    • Predicting spike timing of neocortical pyramidal neurons by simple threshold models
    • Jolivet R, Rauch A, Lüscher H, Gerstner W. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comp Neurosci. 2006;21:35-49.
    • (2006) J Comp Neurosci. , vol.21 , pp. 35-49
    • Jolivet, R.1    Rauch, A.2    Lüscher, H.3    Gerstner, W.4
  • 17
    • 85162394871 scopus 로고    scopus 로고
    • From stochastic nonlinear integrate-and-fire to generalized linear models
    • Mensi S, Naud R, Gerstner W. From stochastic nonlinear integrate-and-fire to generalized linear models. In: NIPS. vol. 24; 2011. p. 1377-1385.
    • (2011) NIPS , vol.24 , pp. 1377-1385
    • Mensi, S.1    Naud, R.2    Gerstner, W.3
  • 19
    • 84859185055 scopus 로고    scopus 로고
    • From circuits to behavior: A bridge too far?
    • Carandini M. From circuits to behavior: a bridge too far? Nature Neurosci. 2012;15(4):507-509.
    • (2012) Nature Neurosci. , vol.15 , Issue.4 , pp. 507-509
    • Carandini, M.1
  • 20
    • 84890561253 scopus 로고    scopus 로고
    • Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints
    • Habenschuss S, Bill J, Nessler B. Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints. In: NIPS. vol. 25; 2012. p. 782-790.
    • (2012) NIPS , vol.25 , pp. 782-790
    • Habenschuss, S.1    Bill, J.2    Nessler, B.3
  • 21
    • 84877807544 scopus 로고    scopus 로고
    • Emergence of optimal decoding of population codes through STDP
    • Habenschuss S, Puhr H, Maass W. Emergence of optimal decoding of population codes through STDP. Neural Computation. 2013;25:1-37.
    • (2013) Neural Computation , vol.25 , pp. 1-37
    • Habenschuss, S.1    Puhr, H.2    Maass, W.3
  • 23
    • 84958542716 scopus 로고    scopus 로고
    • Towards sparsity and selectivity: Bayesian learning of restricted Boltzmann machine for early visual features
    • Xiong H, Szedmak S, Rodrguez-Sanchez A, Piater J. Towards sparsity and selectivity: Bayesian learning of restricted Boltzmann machine for early visual features. In: ICANN; 2014. p. 419-426.
    • (2014) ICANN , pp. 419-426
    • Xiong, H.1    Szedmak, S.2    Rodrguez-Sanchez, A.3    Piater, J.4
  • 24
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464-10472.
    • (1998) J Neurosci. , vol.18 , Issue.24 , pp. 10464-10472
    • Bi, G.Q.1    Poo, M.M.2
  • 25
    • 0035924588 scopus 로고    scopus 로고
    • Rate, timing, and cooperativity jointly determine cortical synaptic plasticity
    • Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149-1164.
    • (2001) Neuron , vol.32 , Issue.6 , pp. 1149-1164
    • Sjöström, P.J.1    Turrigiano, G.G.2    Nelson, S.B.3
  • 26
    • 0035046162 scopus 로고    scopus 로고
    • Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation
    • Montgomery JM, Pavlidis P, Madison DV. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron. 2001;29(3):691-701.
    • (2001) Neuron , vol.29 , Issue.3 , pp. 691-701
    • Montgomery, J.M.1    Pavlidis, P.2    Madison, D.V.3
  • 27
    • 0343289312 scopus 로고    scopus 로고
    • The hybrid monte carlo algorithm on parallel computers
    • Kennedy AD. The Hybrid Monte Carlo algorithm on parallel computers. Parallel Computing. 1999;25(10):1311-1339.
    • (1999) Parallel Computing , vol.25 , Issue.10 , pp. 1311-1339
    • Kennedy, A.D.1
  • 28
    • 84965165313 scopus 로고    scopus 로고
    • Implementing synaptic plasticity in a VLSI spiking neural network model
    • Johannes Schemmel KMEM Andreas Gruebl. Implementing Synaptic Plasticity in a VLSI Spiking Neural Network Model. In: IJCNN; 2006. p. 1-6.
    • (2006) IJCNN , pp. 1-6
    • Johannes Schemmel KMEM Andreas Gruebl1
  • 29
    • 84920586979 scopus 로고    scopus 로고
    • A compound memristive synapse model for statistical learning through STDP in spiking neural networks
    • Bill J, Legenstein R. A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Frontiers in Neuroscience. 2014;8:412.
    • (2014) Frontiers in Neuroscience , vol.8 , pp. 412
    • Bill, J.1    Legenstein, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.