메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 496-504

On the global linear convergence of Frank-Wolfe optimization variants

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; INFORMATION SCIENCE; LEARNING SYSTEMS; NUMBER THEORY;

EID: 84965135280     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (427)

References (36)
  • 1
    • 37549000212 scopus 로고    scopus 로고
    • Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids
    • S. D. Ahipaaoǧlu, P. Sun, and M. Todd. Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods and Software, 23(1):5-19, 2008.
    • (2008) Optimization Methods and Software , vol.23 , Issue.1 , pp. 5-19
    • Ahipaaoǧlu, S.D.1    Sun, P.2    Todd, M.3
  • 2
    • 34250299302 scopus 로고
    • The width and diameter of a simplex
    • R. Alexander. The width and diameter of a simplex. Geometriae Dedicata, 6(1):87-94, 1977.
    • (1977) Geometriae Dedicata , vol.6 , Issue.1 , pp. 87-94
    • Alexander, R.1
  • 3
    • 84889843868 scopus 로고    scopus 로고
    • Learning with submodular functions: A convex optimization perspective
    • F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and Trends in Machine Learning, 6(2-3):145-373, 2013.
    • (2013) Foundations and Trends in Machine Learning , vol.6 , Issue.2-3 , pp. 145-373
    • Bach, F.1
  • 5
    • 21144445984 scopus 로고    scopus 로고
    • A conditional gradient method with linear rate of convergence for solving convex linear systems
    • A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence for solving convex linear systems. Mathematical Methods of Operations Research (ZOR), 59(2):235-247, 2004.
    • (2004) Mathematical Methods of Operations Research (ZOR) , vol.59 , Issue.2 , pp. 235-247
    • Beck, A.1    Teboulle, M.2
  • 6
    • 0009960666 scopus 로고
    • A tight upper bound on the rate of convergence of Frank-Wolfe algorithm
    • M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algorithm. SIAM Journal on Control, 6(4):509-516, 1968.
    • (1968) SIAM Journal on Control , vol.6 , Issue.4 , pp. 509-516
    • Canon, M.D.1    Cullum, C.D.2
  • 7
    • 84956632251 scopus 로고    scopus 로고
    • On pairwise costs for network flow multi-object tracking
    • V. Chari et al. On pairwise costs for network flow multi-object tracking. In CVPR, 2015.
    • (2015) CVPR
    • Chari, V.1
  • 8
    • 0018443274 scopus 로고
    • Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals
    • J. C. Dunn. Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals. SIAM Journal on Control and Optimization, 17(2):187-211, 1979.
    • (1979) SIAM Journal on Control and Optimization , vol.17 , Issue.2 , pp. 187-211
    • Dunn, J.C.1
  • 11
    • 84969531714 scopus 로고    scopus 로고
    • Faster rates for the Frank-Wolfe method over strongly-convex sets
    • D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. In ICML, 2015.
    • (2015) ICML
    • Garber, D.1    Hazan, E.2
  • 13
    • 0023404413 scopus 로고
    • Restricted simplicial decomposition: Computation and extensions
    • Springer
    • D. Hearn, S. Lawphongpanich, and J. Ventura. Restricted simplicial decomposition: Computation and extensions. In Computation Mathematical Programming, volume 31, pages 99-118. Springer, 1987.
    • (1987) Computation Mathematical Programming , vol.31 , pp. 99-118
    • Hearn, D.1    Lawphongpanich, S.2    Ventura, J.3
  • 14
    • 0016025237 scopus 로고
    • An extension of the Frank and Wolfe method of feasible directions
    • C. A. Holloway. An extension of the Frank and Wolfe method of feasible directions. Mathematical Programming, 6(1):14-27, 1974.
    • (1974) Mathematical Programming , vol.6 , Issue.1 , pp. 14-27
    • Holloway, C.A.1
  • 15
    • 84897524603 scopus 로고    scopus 로고
    • Revisiting Frank-Wolfe: Projection-free sparse convex optimization
    • M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, 2013.
    • (2013) ICML
    • Jaggi, M.1
  • 16
    • 84943738421 scopus 로고    scopus 로고
    • Efficient image and video co-localization with Frank-Wolfe algorithm
    • A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with Frank-Wolfe algorithm. In ECCV, 2014.
    • (2014) ECCV
    • Joulin, A.1    Tang, K.2    Fei-Fei, L.3
  • 19
    • 84965179416 scopus 로고    scopus 로고
    • A linearly convergent linear-time first-order algorithm for support vector classification with a core set result
    • P. Kumar and E. A. Yildirim. A linearly convergent linear-time first-order algorithm for support vector classification with a core set result. INFORMS Journal on Computing, 2010.
    • (2010) INFORMS Journal on Computing
    • Kumar, P.1    Yildirim, E.A.2
  • 21
  • 24
    • 84965134988 scopus 로고    scopus 로고
    • A universal catalyst for first-order optimization
    • H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In NIPS, 2015.
    • (2015) NIPS
    • Lin, H.1    Mairal, J.2    Harchaoui, Z.3
  • 26
    • 84926204705 scopus 로고    scopus 로고
    • A novel Frank-Wolfe algorithm. Analysis and applications to large-scale SVM training
    • R. Nãnculef, E. Frandi, C. Sartori, and H. Allende. A novel Frank-Wolfe algorithm. Analysis and applications to large-scale SVM training. Information Sciences, 2014.
    • (2014) Information Sciences
    • Nãnculef, R.1    Frandi, E.2    Sartori, C.3    Allende, H.4
  • 29
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods: support vector learning, pages 185-208. 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 31
    • 0002975378 scopus 로고
    • Simplicial decomposition in nonlinear programming algorithms
    • B. Von Hohenbalken. Simplicial decomposition in nonlinear programming algorithms. Mathematical Programming, 13(1):49-68, 1977.
    • (1977) Mathematical Programming , vol.13 , Issue.1 , pp. 49-68
    • Von Hohenbalken, B.1
  • 32
  • 33
    • 84901632905 scopus 로고    scopus 로고
    • Iteration complexity of feasible descent methods for convex optimization
    • P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex optimization. Journal of Machine Learning Research, 15:1523-1548, 2014.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1523-1548
    • Wang, P.-W.1    Lin, C.-J.2
  • 35
    • 34250385434 scopus 로고
    • Finding the nearest point in a polytope
    • P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11(1):128-149, 1976.
    • (1976) Mathematical Programming , vol.11 , Issue.1 , pp. 128-149
    • Wolfe, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.