메뉴 건너뛰기




Volumn 207, Issue , 2016, Pages 136-155

Topological properties of the group of the null sequences valued in an Abelian topological group

Author keywords

(E) space; Glicksberg property; Group of null sequences; Locally compact group; Monothetic group; Schur property; Strictly angelic space; space

Indexed keywords


EID: 84965054181     PISSN: 01668641     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.topol.2016.04.013     Document Type: Article
Times cited : (10)

References (47)
  • 2
    • 0242694349 scopus 로고    scopus 로고
    • Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups
    • Dissertation.
    • Außenhofer L. Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Diss. Math. 1998, 384. 113 pp.
    • (1998) Diss. Math. , vol.384 , pp. 113
    • Außenhofer, L.1
  • 3
    • 59549083325 scopus 로고    scopus 로고
    • On the Glicksberg theorem for locally quasi-convex Schwartz groups
    • Außenhofer L. On the Glicksberg theorem for locally quasi-convex Schwartz groups. Fundam. Math. 2008, 201:163-177.
    • (2008) Fundam. Math. , vol.201 , pp. 163-177
    • Außenhofer, L.1
  • 5
    • 84871337442 scopus 로고    scopus 로고
    • On reflexive group topologies on abelian groups of finite exponent
    • Außenhofer L., Gabriyelyan S. On reflexive group topologies on abelian groups of finite exponent. Arch. Math. 2012, 99:583-588.
    • (2012) Arch. Math. , vol.99 , pp. 583-588
    • Außenhofer, L.1    Gabriyelyan, S.2
  • 6
    • 84965067376 scopus 로고    scopus 로고
    • On uniformly discrete subsets in uniform spaces and topological groups, preprint.
    • T. Banakh, S. Gabriyelyan, I. Protasov, On uniformly discrete subsets in uniform spaces and topological groups, preprint.
    • Banakh, T.1    Gabriyelyan, S.2    Protasov, I.3
  • 7
    • 0003208315 scopus 로고
    • Additive Subgroups of Topological Vector Spaces
    • Springer, Berlin-Heidelberg-New York
    • Banaszczyk W. Additive Subgroups of Topological Vector Spaces. Lect. Notes Math. 1991, vol. 1466. Springer, Berlin-Heidelberg-New York.
    • (1991) Lect. Notes Math. , vol.1466
    • Banaszczyk, W.1
  • 11
    • 0000816928 scopus 로고
    • Topologies induced by groups of characters
    • Comfort W.W., Ross K.A. Topologies induced by groups of characters. Fundam. Math. 1964, 55:283-291.
    • (1964) Fundam. Math. , vol.55 , pp. 283-291
    • Comfort, W.W.1    Ross, K.A.2
  • 12
    • 84972528320 scopus 로고
    • Pseudocompactness and uniform continuity in topological groups
    • Comfort W.W., Ross K.A. Pseudocompactness and uniform continuity in topological groups. Pac. J. Math. 1966, 16:483-496.
    • (1966) Pac. J. Math. , vol.16 , pp. 483-496
    • Comfort, W.W.1    Ross, K.A.2
  • 13
    • 84902474362 scopus 로고    scopus 로고
    • Group valued null sequences and metrizable non-Mackey groups
    • Dikranjan D., Martín-Peinador E., Tarieladze V. Group valued null sequences and metrizable non-Mackey groups. Forum Math. 2014, 26:723-757.
    • (2014) Forum Math. , vol.26 , pp. 723-757
    • Dikranjan, D.1    Martín-Peinador, E.2    Tarieladze, V.3
  • 17
    • 77957900171 scopus 로고    scopus 로고
    • Groups of quasi-invariance and the Pontryagin duality
    • Gabriyelyan S. Groups of quasi-invariance and the Pontryagin duality. Topol. Appl. 2010, 157:2786-2802.
    • (2010) Topol. Appl. , vol.157 , pp. 2786-2802
    • Gabriyelyan, S.1
  • 18
    • 77957894946 scopus 로고    scopus 로고
    • On T-sequences and characterized subgroups
    • Gabriyelyan S. On T-sequences and characterized subgroups. Topol. Appl. 2010, 157:2834-2843.
    • (2010) Topol. Appl. , vol.157 , pp. 2834-2843
    • Gabriyelyan, S.1
  • 19
    • 84860837528 scopus 로고    scopus 로고
    • Characterizable groups: some results and open questions
    • Gabriyelyan S. Characterizable groups: some results and open questions. Topol. Appl. 2012, 159:2378-2391.
    • (2012) Topol. Appl. , vol.159 , pp. 2378-2391
    • Gabriyelyan, S.1
  • 20
    • 84877710261 scopus 로고    scopus 로고
    • On a generalization of Abelian sequential groups
    • Gabriyelyan S. On a generalization of Abelian sequential groups. Fundam. Math. 2013, 221:95-127.
    • (2013) Fundam. Math. , vol.221 , pp. 95-127
    • Gabriyelyan, S.1
  • 22
    • 84893021114 scopus 로고    scopus 로고
    • On characterized subgroups of Abelian topological groups X and the group of all X-valued null sequences
    • Gabriyelyan S. On characterized subgroups of Abelian topological groups X and the group of all X-valued null sequences. Comment. Math. Univ. Carol. 2014, 55:73-99.
    • (2014) Comment. Math. Univ. Carol. , vol.55 , pp. 73-99
    • Gabriyelyan, S.1
  • 23
    • 84924942578 scopus 로고    scopus 로고
    • On reflexivity of the group of the null sequences valued in an Abelian topological group
    • Gabriyelyan S. On reflexivity of the group of the null sequences valued in an Abelian topological group. J. Pure Appl. Algebra 2015, 219:2989-3008.
    • (2015) J. Pure Appl. Algebra , vol.219 , pp. 2989-3008
    • Gabriyelyan, S.1
  • 25
    • 84901636952 scopus 로고    scopus 로고
    • The strong Pytkeev property for topological groups and topological vector spaces
    • Gabriyelyan S., Kakol J., Leiderman A. The strong Pytkeev property for topological groups and topological vector spaces. Monatshefte Math. 2014, 175:519-542.
    • (2014) Monatshefte Math. , vol.175 , pp. 519-542
    • Gabriyelyan, S.1    Kakol, J.2    Leiderman, A.3
  • 26
    • 0001535687 scopus 로고
    • Uniform boundedness for groups
    • Glicksberg I. Uniform boundedness for groups. Can. J. Math. 1962, 14:269-276.
    • (1962) Can. J. Math. , vol.14 , pp. 269-276
    • Glicksberg, I.1
  • 27
    • 7544225880 scopus 로고
    • A productive class of angelic spaces
    • Govaerts W. A productive class of angelic spaces. J. Lond. Math. Soc. 1980, 22:355-364.
    • (1980) J. Lond. Math. Soc. , vol.22 , pp. 355-364
    • Govaerts, W.1
  • 29
    • 84968511046 scopus 로고
    • A countably compact group H such that H×H is not countably compact
    • Hart K., van Mill J. A countably compact group H such that H×H is not countably compact. Trans. Am. Math. Soc. 1991, 323:811-821.
    • (1991) Trans. Am. Math. Soc. , vol.323 , pp. 811-821
    • Hart, K.1    van Mill, J.2
  • 30
    • 60549087122 scopus 로고    scopus 로고
    • The Bohr topology of discrete non Abelian groups
    • Hernández S. The Bohr topology of discrete non Abelian groups. J. Lie Theory 2008, 18:733-746.
    • (2008) J. Lie Theory , vol.18 , pp. 733-746
    • Hernández, S.1
  • 31
    • 0040172259 scopus 로고    scopus 로고
    • A characterization of the Schur property by means of the Bohr topology
    • Hernández S., Galindo J., Macario S. A characterization of the Schur property by means of the Bohr topology. Topol. Appl. 1999, 97:99-108.
    • (1999) Topol. Appl. , vol.97 , pp. 99-108
    • Hernández, S.1    Galindo, J.2    Macario, S.3
  • 32
    • 12744277866 scopus 로고    scopus 로고
    • Invariance of compactness for the Bohr topology
    • Hernández S., Macario S. Invariance of compactness for the Bohr topology. Topol. Appl. 2001, 111:161-173.
    • (2001) Topol. Appl. , vol.111 , pp. 161-173
    • Hernández, S.1    Macario, S.2
  • 34
    • 2442660141 scopus 로고    scopus 로고
    • A property of Dunford-Pettis type in topological groups
    • Martín-Peinador E., Tarieladze V. A property of Dunford-Pettis type in topological groups. Proc. Am. Math. Soc. 2003, 132:1827-1837.
    • (2003) Proc. Am. Math. Soc. , vol.132 , pp. 1827-1837
    • Martín-Peinador, E.1    Tarieladze, V.2
  • 35
    • 84968480677 scopus 로고
    • Almost periodic functions in a group
    • von Neumann J. Almost periodic functions in a group. Trans. Am. Math. Soc. 1934, 36:445-492.
    • (1934) Trans. Am. Math. Soc. , vol.36 , pp. 445-492
    • von Neumann, J.1
  • 36
    • 0000067766 scopus 로고
    • K-groups and duality
    • Noble N. k-groups and duality. Trans. Am. Math. Soc. 1970, 151:551-561.
    • (1970) Trans. Am. Math. Soc. , vol.151 , pp. 551-561
    • Noble, N.1
  • 37
    • 0000008090 scopus 로고
    • Abelian groups which satisfy Pontryagin duality need not respect compactness
    • Remus D., Trigos-Arrieta F.J. Abelian groups which satisfy Pontryagin duality need not respect compactness. Proc. Am. Math. Soc. 1993, 117:1195-1200.
    • (1993) Proc. Am. Math. Soc. , vol.117 , pp. 1195-1200
    • Remus, D.1    Trigos-Arrieta, F.J.2
  • 38
    • 0038595200 scopus 로고    scopus 로고
    • Locally convex spaces as subgroups of products of locally compact abelian groups
    • Remus D., Trigos-Arrieta F.J. Locally convex spaces as subgroups of products of locally compact abelian groups. Math. Jpn. 1997, 46:217-222.
    • (1997) Math. Jpn. , vol.46 , pp. 217-222
    • Remus, D.1    Trigos-Arrieta, F.J.2
  • 39
    • 4444235351 scopus 로고    scopus 로고
    • The Bohr topology of Moore groups
    • Remus D., Trigos-Arrieta F.J. The Bohr topology of Moore groups. Topol. Appl. 1999, 97:85-98.
    • (1999) Topol. Appl. , vol.97 , pp. 85-98
    • Remus, D.1    Trigos-Arrieta, F.J.2
  • 40
    • 0346996484 scopus 로고
    • Some remarks on monothetic groups
    • Rolewicz S. Some remarks on monothetic groups. Colloq. Math. 1964, XIII:28-29.
    • (1964) Colloq. Math. , vol.13 , pp. 28-29
    • Rolewicz, S.1
  • 42
    • 15944413467 scopus 로고    scopus 로고
    • Countable Fréchet topological groups under CH
    • Shibakov A. Countable Fréchet topological groups under CH. Topol. Appl. 1999, 91:119-139.
    • (1999) Topol. Appl. , vol.91 , pp. 119-139
    • Shibakov, A.1
  • 43
    • 0000903126 scopus 로고
    • The Pontrjagin duality theorem in linear spaces
    • Smith M.F. The Pontrjagin duality theorem in linear spaces. Ann. Math. 1952, 56:248-253.
    • (1952) Ann. Math. , vol.56 , pp. 248-253
    • Smith, M.F.1
  • 44
    • 0001178156 scopus 로고
    • Compactness type properties in topological groups
    • Tkachenko M.G. Compactness type properties in topological groups. Czechoslov. Math. J. 1988, 38:324-341.
    • (1988) Czechoslov. Math. J. , vol.38 , pp. 324-341
    • Tkachenko, M.G.1
  • 46
    • 0000536334 scopus 로고
    • Continuity, boundedness, connectedness and the Lindelöf property for topological groups
    • Trigos-Arrieta F.J. Continuity, boundedness, connectedness and the Lindelöf property for topological groups. J. Pure Appl. Algebra 1991, 70:199-210.
    • (1991) J. Pure Appl. Algebra , vol.70 , pp. 199-210
    • Trigos-Arrieta, F.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.