메뉴 건너뛰기




Volumn 131, Issue 3, 2016, Pages 461-473

Social media’s initial reaction to information and misinformation on ebola, august 2014: Facts and rumors

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; EBOLA HEMORRHAGIC FEVER; EPIDEMIC; HEALTH CARE ORGANIZATION; HUMAN; INTERNET; MEDICAL INFORMATION; MEDICAL MISINFORMATION; PRIORITY JOURNAL; RISK FACTOR; SOCIAL MEDIA; WORLD HEALTH ORGANIZATION; GEORGIA; HONG KONG; INFORMATION DISSEMINATION; INTERPERSONAL COMMUNICATION;

EID: 84964787366     PISSN: 00333549     EISSN: 14682877     Source Type: Journal    
DOI: 10.1177/003335491613100312     Document Type: Article
Times cited : (105)

References (50)
  • 1
    • 84910068099 scopus 로고    scopus 로고
    • Response to Ebola in the US: Misinformation, fear, and new opportunities
    • Merino JG. Response to Ebola in the US: misinformation, fear, and new opportunities. BMJ 2014;349:g6712
    • (2014) BMJ , vol.349
    • Merino, J.G.1
  • 2
    • 84886381106 scopus 로고    scopus 로고
    • Using Twitter for breast cancer prevention: An analysis of breast cancer awareness month
    • Thackeray R, Burton SH, Giraud-Carrier C, Rollins S, Draper CR. Using Twitter for breast cancer prevention: an analysis of breast cancer awareness month. BMC Cancer 2013;13:508
    • (2013) BMC Cancer , vol.13 , pp. 508
    • Thackeray, R.1    Burton, S.H.2    Giraud-Carrier, C.3    Rollins, S.4    Draper, C.R.5
  • 3
    • 84877663361 scopus 로고    scopus 로고
    • Local health department use of Twitter to disseminate diabetes information, United States
    • Harris JK, Mueller NL, Snider D, Haire-Joshu D. Local health department use of Twitter to disseminate diabetes information, United States. Prev Chronic Dis 2013;10:E70
    • (2013) Prev Chronic Dis , vol.10 , pp. E70
    • Harris, J.K.1    Mueller, N.L.2    Snider, D.3    Haire-Joshu, D.4
  • 4
    • 84904958942 scopus 로고    scopus 로고
    • Efficient use of social media during the avian influenza A(H7N9) emergency response
    • Fung IC, Wong K. Efficient use of social media during the avian influenza A(H7N9) emergency response. Western Pac Surveill Response J 2013;4:1-3
    • (2013) Western Pac Surveill Response J , vol.4 , pp. 1-3
    • Fung, I.C.1    Wong, K.2
  • 5
    • 84911423430 scopus 로고    scopus 로고
    • How Twitter may have helped Nigeria contain Ebola
    • Carter M. How Twitter may have helped Nigeria contain Ebola. BMJ 2014;349:g6946
    • (2014) BMJ , vol.349
    • Carter, M.1
  • 7
    • 84908440181 scopus 로고    scopus 로고
    • Ebola, Twitter, and misinformation: A dangerous combination?
    • Oyeyemi SO, Gabarron E, Wynn R. Ebola, Twitter, and misinformation: a dangerous combination? BMJ 2014;349:g6178
    • (2014) BMJ , pp. 349
    • Oyeyemi, S.O.1    Gabarron, E.2    Wynn, R.3
  • 13
    • 84964793721 scopus 로고    scopus 로고
    • Twitter Inc, [news release] 2014 Jul 29cited 2014 Aug 31
    • Twitter Inc. Twitter reports second quarter 2014 results; [news release] 2014 Jul 29 [cited 2014 Aug 31]. Available from: https://investor.twitterinc.com/releasedetail.cfm?ReleaseID5862505
    • Twitter Reports Second Quarter 2014 Results
  • 15
    • 84898767960 scopus 로고    scopus 로고
    • Could behavioral medicine lead the Web data revolution?
    • Ayers JW, Althouse BM, Dredze M. Could behavioral medicine lead the Web data revolution? JAMA 2014;311:1399-400
    • (2014) JAMA , vol.311 , pp. 1399-1400
    • Ayers, J.W.1    Althouse, B.M.2    Dredze, M.3
  • 16
    • 84964793709 scopus 로고    scopus 로고
    • Weibo Corporation, press release] 2014 Aug 14 [cited 2014 Aug 31]
    • Weibo Corporation. Weibo reports second quarter 2014 financial results; [press release] 2014 Aug 14 [cited 2014 Aug 31]. Available from: http://ir.weibo.com/phoenix.zhtml?c5253076&p5irol-newsArticle&ID51958713&highlight5
    • Weibo Reports Second Quarter 2014 Financial Results
  • 18
    • 84964764203 scopus 로고    scopus 로고
    • R Development Core Team. R: Version 3.0.2. Vienna: R Foundation for Statistical Computing;
    • R Development Core Team. R: Version 3.0.2. Vienna: R Foundation for Statistical Computing; 2013
    • (2013)
  • 21
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory
    • Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory, IEEE Transactions On 1967;13:260-9
    • (1967) IEEE Transactions On , vol.13 , pp. 260-269
    • Viterbi, A.J.1
  • 26
  • 27
    • 18544372466 scopus 로고    scopus 로고
    • Understanding interobserver agreement: The kappa statistic
    • Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-3
    • (2005) Fam Med , vol.37 , pp. 360-363
    • Viera, A.J.1    Garrett, J.M.2
  • 28
    • 84929180308 scopus 로고    scopus 로고
    • Chinese social media reaction to information about 42 notifiable infectious diseases [published erratum appears in PLoS One 2015;10:0129525]
    • Fung IC, Hao Y, Cai J, Ying Y, Schaible BJ, Yu CM, et al. Chinese social media reaction to information about 42 notifiable infectious diseases [published erratum appears in PLoS One 2015;10:0129525]. PLoS One 2015;10:e0126092
    • (2015) Plos One , vol.10
    • Fung, I.C.1    Hao, Y.2    Cai, J.3    Ying, Y.4    Schaible, B.J.5    Yu, C.M.6
  • 29
    • 84931022706 scopus 로고    scopus 로고
    • What can we learn about the Ebola outbreak from tweets?
    • Odlum M, Yoon S. What can we learn about the Ebola outbreak from tweets? Am J Infect Control 2015;43:563-71
    • (2015) Am J Infect Control , vol.43 , pp. 563-571
    • Odlum, M.1    Yoon, S.2
  • 30
    • 84939565028 scopus 로고    scopus 로고
    • Dissemination of “misleading” information on social media during the 2014 Ebola epidemic: An area of concern
    • Nagpal SJ, Karimianpour A, Mukhija D, Mohan D. Dissemination of “misleading” information on social media during the 2014 Ebola epidemic: an area of concern. Travel Med Infect Dis 2015;13:338-9
    • (2015) Travel Med Infect Dis , vol.13 , pp. 338-339
    • Nagpal, S.J.1    Karimianpour, A.2    Mukhija, D.3    Mohan, D.4
  • 31
    • 84958179096 scopus 로고    scopus 로고
    • YouTube videos as a source of medical information during the Ebola hemorrhagic fever epidemic
    • Nagpal SJ, Karimianpour A, Mukhija D, Mohan D, Brateanu A. YouTube videos as a source of medical information during the Ebola hemorrhagic fever epidemic. Springerplus 2015;4:457
    • (2015) Springerplus , vol.4 , pp. 457
    • Nagpal, S.J.1    Karimianpour, A.2    Mukhija, D.3    Mohan, D.4    Brateanu, A.5
  • 36
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection— harnessing the Web for public health surveillance
    • Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection— harnessing the Web for public health surveillance. N Engl J Med 2009;360:2153-5, 2157
    • (2009) N Engl J Med , vol.360 , Issue.2157 , pp. 2153-2155
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 38
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through Twitter: An analysis of the 2012–2013 influenza epidemic
    • Broniatowski DA, Paul MJ, Dredze M. National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLoS One 2013;8:e83672
    • (2013) Plos One , vol.8
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 40
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google flu trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 2013;9:e1003256
    • (2013) Plos Comput Biol , vol.9
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3    Viboud, C.4    Simonsen, L.5
  • 41
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (An external revision to) Google Flu trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to) Google Flu trends? Am J Prev Med 2014;47:341-7
    • (2014) Am J Prev Med , vol.47 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 42
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: Traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014;343:1203-5
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 44
    • 84921418879 scopus 로고    scopus 로고
    • Chinese social media reaction to the MERS-CoV and avian influenza A (H7N9) outbreaks
    • Fung IC, Fu KW, Ying Y, Schaible B, Hao Y, Chan CH, et al. Chinese social media reaction to the MERS-CoV and avian influenza A (H7N9) outbreaks. Infect Dis Poverty 2013;2:31
    • (2013) Infect Dis Poverty , vol.2 , pp. 31
    • Fung, I.C.1    Fu, K.W.2    Ying, Y.3    Schaible, B.4    Hao, Y.5    Chan, C.H.6
  • 45
    • 84999018404 scopus 로고    scopus 로고
    • Global Handwashing Day 2012: A qualitative content analysis of Chinese social media reaction to a health promotion event
    • Fung IC, Cai J, Hao Y, Ying Y, Chan BS, Tse ZT, et al. Global Handwashing Day 2012: a qualitative content analysis of Chinese social media reaction to a health promotion event. Western Pac Surveill Response J 2015;6:34-42
    • (2015) Western Pac Surveill Response J , vol.6 , pp. 34-42
    • Fung, I.C.1    Cai, J.2    Hao, Y.3    Ying, Y.4    Chan, B.S.5    Tse, Z.T.6
  • 46
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak
    • Chew C, Eysenbach G. Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 2010;5:e14118
    • (2010) Plos One , vol.5
    • Chew, C.1    Eysenbach, G.2
  • 47
    • 84874760778 scopus 로고    scopus 로고
    • Assessing censorship on microblogs in China: Discriminatory keyword analysis and the real-name registration policy. Internet Computing
    • Fu KW, Chan CH, Chau M. Assessing censorship on microblogs in China: discriminatory keyword analysis and the real-name registration policy. Internet Computing, IEEE 2013;17:42-50
    • (2013) IEEE , vol.17 , pp. 42-50
    • Fu, K.W.1    Chan, C.H.2    Chau, M.3
  • 49
    • 84874787339 scopus 로고    scopus 로고
    • Reality check for the Chinese microblog space: A random sampling approach
    • Fu KW, Chau M. Reality check for the Chinese microblog space: a random sampling approach. PLoS One 2013;8:e58356
    • (2013) Plos One , vol.8
    • Fu, K.W.1    Chau, M.2
  • 50
    • 84901343991 scopus 로고    scopus 로고
    • Pew Research Internet Project, cited 2014 Jul 16
    • Pew Research Internet Project. Social networking fact sheet [cited 2014 Jul 16]. Available from: http://www.pewinternet.org /fact-sheets/social-networking-fact-sheet
    • Social Networking Fact Sheet


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.