-
1
-
-
84910068099
-
Response to Ebola in the US: Misinformation, fear, and new opportunities
-
Merino JG. Response to Ebola in the US: misinformation, fear, and new opportunities. BMJ 2014;349:g6712
-
(2014)
BMJ
, vol.349
-
-
Merino, J.G.1
-
2
-
-
84886381106
-
Using Twitter for breast cancer prevention: An analysis of breast cancer awareness month
-
Thackeray R, Burton SH, Giraud-Carrier C, Rollins S, Draper CR. Using Twitter for breast cancer prevention: an analysis of breast cancer awareness month. BMC Cancer 2013;13:508
-
(2013)
BMC Cancer
, vol.13
, pp. 508
-
-
Thackeray, R.1
Burton, S.H.2
Giraud-Carrier, C.3
Rollins, S.4
Draper, C.R.5
-
3
-
-
84877663361
-
Local health department use of Twitter to disseminate diabetes information, United States
-
Harris JK, Mueller NL, Snider D, Haire-Joshu D. Local health department use of Twitter to disseminate diabetes information, United States. Prev Chronic Dis 2013;10:E70
-
(2013)
Prev Chronic Dis
, vol.10
, pp. E70
-
-
Harris, J.K.1
Mueller, N.L.2
Snider, D.3
Haire-Joshu, D.4
-
4
-
-
84904958942
-
Efficient use of social media during the avian influenza A(H7N9) emergency response
-
Fung IC, Wong K. Efficient use of social media during the avian influenza A(H7N9) emergency response. Western Pac Surveill Response J 2013;4:1-3
-
(2013)
Western Pac Surveill Response J
, vol.4
, pp. 1-3
-
-
Fung, I.C.1
Wong, K.2
-
5
-
-
84911423430
-
How Twitter may have helped Nigeria contain Ebola
-
Carter M. How Twitter may have helped Nigeria contain Ebola. BMJ 2014;349:g6946
-
(2014)
BMJ
, vol.349
-
-
Carter, M.1
-
7
-
-
84908440181
-
Ebola, Twitter, and misinformation: A dangerous combination?
-
Oyeyemi SO, Gabarron E, Wynn R. Ebola, Twitter, and misinformation: a dangerous combination? BMJ 2014;349:g6178
-
(2014)
BMJ
, pp. 349
-
-
Oyeyemi, S.O.1
Gabarron, E.2
Wynn, R.3
-
13
-
-
84964793721
-
-
Twitter Inc, [news release] 2014 Jul 29cited 2014 Aug 31
-
Twitter Inc. Twitter reports second quarter 2014 results; [news release] 2014 Jul 29 [cited 2014 Aug 31]. Available from: https://investor.twitterinc.com/releasedetail.cfm?ReleaseID5862505
-
Twitter Reports Second Quarter 2014 Results
-
-
-
14
-
-
85047687300
-
Twitter: An opportunity for public health campaigns
-
Wehner MR, Chren MM, Shive ML, Resneck JS Jr, Pagoto S, Seidenberg AB, et al. Twitter: an opportunity for public health campaigns. Lancet 2014;384:131-2
-
(2014)
Lancet
, vol.384
, pp. 131-132
-
-
Wehner, M.R.1
Chren, M.M.2
Shive, M.L.3
Resneck, J.S.4
Pagoto, S.5
Seidenberg, A.B.6
-
15
-
-
84898767960
-
Could behavioral medicine lead the Web data revolution?
-
Ayers JW, Althouse BM, Dredze M. Could behavioral medicine lead the Web data revolution? JAMA 2014;311:1399-400
-
(2014)
JAMA
, vol.311
, pp. 1399-1400
-
-
Ayers, J.W.1
Althouse, B.M.2
Dredze, M.3
-
16
-
-
84964793709
-
-
Weibo Corporation, press release] 2014 Aug 14 [cited 2014 Aug 31]
-
Weibo Corporation. Weibo reports second quarter 2014 financial results; [press release] 2014 Aug 14 [cited 2014 Aug 31]. Available from: http://ir.weibo.com/phoenix.zhtml?c5253076&p5irol-newsArticle&ID51958713&highlight5
-
Weibo Reports Second Quarter 2014 Financial Results
-
-
-
17
-
-
84880913661
-
Influenza A (H7N9) and the importance of digital epidemiology
-
Salathé M, Freifeld CC, Mekaru SR, Tomasulo AF, Brownstein JS. Influenza A (H7N9) and the importance of digital epidemiology. N Engl J Med 2013;369:401-4
-
(2013)
N Engl J Med
, vol.369
, pp. 401-404
-
-
Salathé, M.1
Freifeld, C.C.2
Mekaru, S.R.3
Tomasulo, A.F.4
Brownstein, J.S.5
-
18
-
-
84964764203
-
-
R Development Core Team. R: Version 3.0.2. Vienna: R Foundation for Statistical Computing;
-
R Development Core Team. R: Version 3.0.2. Vienna: R Foundation for Statistical Computing; 2013
-
(2013)
-
-
-
19
-
-
84873900391
-
The textcat package for n-gram based text categorization in R
-
Hornik K, Mair P, Rauch J, Geiger W, Buchta C, Feinerer I. The textcat package for n-gram based text categorization in R. J Stat Software 2013;52(6).
-
(2013)
J Stat Software
, vol.52
, Issue.6
-
-
Hornik, K.1
Mair, P.2
Rauch, J.3
Geiger, W.4
Buchta, C.5
Feinerer, I.6
-
21
-
-
84935113569
-
Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory
-
Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory, IEEE Transactions On 1967;13:260-9
-
(1967)
IEEE Transactions On
, vol.13
, pp. 260-269
-
-
Viterbi, A.J.1
-
22
-
-
84861058092
-
Improved Viterbi algorithm- based HMM2 for Chinese words segmentation
-
Hangzhou, Zhejiang China
-
Lei L, Qiao G, Dequan Y, Qimin C, editors. Improved Viterbi algorithm- based HMM2 for Chinese words segmentation. International Conference on Computer Science and Electronics Engineering; 2012 Mar 23–25; Hangzhou, Zhejiang China.
-
(2012)
International Conference on Computer Science and Electronics Engineering
-
-
Lei, L.1
Qiao, G.2
Dequan, Y.3
Qimin, C.4
-
27
-
-
18544372466
-
Understanding interobserver agreement: The kappa statistic
-
Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-3
-
(2005)
Fam Med
, vol.37
, pp. 360-363
-
-
Viera, A.J.1
Garrett, J.M.2
-
28
-
-
84929180308
-
Chinese social media reaction to information about 42 notifiable infectious diseases [published erratum appears in PLoS One 2015;10:0129525]
-
Fung IC, Hao Y, Cai J, Ying Y, Schaible BJ, Yu CM, et al. Chinese social media reaction to information about 42 notifiable infectious diseases [published erratum appears in PLoS One 2015;10:0129525]. PLoS One 2015;10:e0126092
-
(2015)
Plos One
, vol.10
-
-
Fung, I.C.1
Hao, Y.2
Cai, J.3
Ying, Y.4
Schaible, B.J.5
Yu, C.M.6
-
29
-
-
84931022706
-
What can we learn about the Ebola outbreak from tweets?
-
Odlum M, Yoon S. What can we learn about the Ebola outbreak from tweets? Am J Infect Control 2015;43:563-71
-
(2015)
Am J Infect Control
, vol.43
, pp. 563-571
-
-
Odlum, M.1
Yoon, S.2
-
30
-
-
84939565028
-
Dissemination of “misleading” information on social media during the 2014 Ebola epidemic: An area of concern
-
Nagpal SJ, Karimianpour A, Mukhija D, Mohan D. Dissemination of “misleading” information on social media during the 2014 Ebola epidemic: an area of concern. Travel Med Infect Dis 2015;13:338-9
-
(2015)
Travel Med Infect Dis
, vol.13
, pp. 338-339
-
-
Nagpal, S.J.1
Karimianpour, A.2
Mukhija, D.3
Mohan, D.4
-
31
-
-
84958179096
-
YouTube videos as a source of medical information during the Ebola hemorrhagic fever epidemic
-
Nagpal SJ, Karimianpour A, Mukhija D, Mohan D, Brateanu A. YouTube videos as a source of medical information during the Ebola hemorrhagic fever epidemic. Springerplus 2015;4:457
-
(2015)
Springerplus
, vol.4
, pp. 457
-
-
Nagpal, S.J.1
Karimianpour, A.2
Mukhija, D.3
Mohan, D.4
Brateanu, A.5
-
32
-
-
84937406838
-
YouTube as a source of information on Ebola virus disease
-
Pathak R, Poudel DR, Karmacharya P, Pathak A, Aryal MR, Mahmood M, et al. YouTube as a source of information on Ebola virus disease. N Am J Med Sci 2015;7:306-9
-
(2015)
N am J Med Sci
, vol.7
, pp. 306-309
-
-
Pathak, R.1
Poudel, D.R.2
Karmacharya, P.3
Pathak, A.4
Aryal, M.R.5
Mahmood, M.6
-
34
-
-
84919360678
-
Ebola and the social media
-
Fung IC, Tse ZT, Cheung CN, Miu AS, Fu KW. Ebola and the social media. Lancet 2014;384:2207
-
(2014)
Lancet
, vol.384
, pp. 2207
-
-
Fung, I.C.1
Tse, Z.T.2
Cheung, C.N.3
Miu, A.S.4
Fu, K.W.5
-
36
-
-
66149157263
-
Digital disease detection— harnessing the Web for public health surveillance
-
Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection— harnessing the Web for public health surveillance. N Engl J Med 2009;360:2153-5, 2157
-
(2009)
N Engl J Med
, vol.360
, Issue.2157
, pp. 2153-2155
-
-
Brownstein, J.S.1
Freifeld, C.C.2
Madoff, L.C.3
-
37
-
-
84864615762
-
Digital epidemiology
-
Salathe M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, et al. Digital epidemiology. PLoS Comput Biol 2012;8:e1002616
-
(2012)
Plos Comput Biol
, vol.8
-
-
Salathe, M.1
Bengtsson, L.2
Bodnar, T.J.3
Brewer, D.D.4
Brownstein, J.S.5
Buckee, C.6
-
38
-
-
84891941337
-
National and local influenza surveillance through Twitter: An analysis of the 2012–2013 influenza epidemic
-
Broniatowski DA, Paul MJ, Dredze M. National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLoS One 2013;8:e83672
-
(2013)
Plos One
, vol.8
-
-
Broniatowski, D.A.1
Paul, M.J.2
Dredze, M.3
-
39
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009;457:1012-4
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
40
-
-
84887293587
-
Reassessing Google flu trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales
-
Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol 2013;9:e1003256
-
(2013)
Plos Comput Biol
, vol.9
-
-
Olson, D.R.1
Konty, K.J.2
Paladini, M.3
Viboud, C.4
Simonsen, L.5
-
41
-
-
84906354517
-
What can digital disease detection learn from (An external revision to) Google Flu trends?
-
Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to) Google Flu trends? Am J Prev Med 2014;47:341-7
-
(2014)
Am J Prev Med
, vol.47
, pp. 341-347
-
-
Santillana, M.1
Zhang, D.W.2
Althouse, B.M.3
Ayers, J.W.4
-
42
-
-
84896056107
-
Big data. The parable of Google Flu: Traps in big data analysis
-
Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014;343:1203-5
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
44
-
-
84921418879
-
Chinese social media reaction to the MERS-CoV and avian influenza A (H7N9) outbreaks
-
Fung IC, Fu KW, Ying Y, Schaible B, Hao Y, Chan CH, et al. Chinese social media reaction to the MERS-CoV and avian influenza A (H7N9) outbreaks. Infect Dis Poverty 2013;2:31
-
(2013)
Infect Dis Poverty
, vol.2
, pp. 31
-
-
Fung, I.C.1
Fu, K.W.2
Ying, Y.3
Schaible, B.4
Hao, Y.5
Chan, C.H.6
-
45
-
-
84999018404
-
Global Handwashing Day 2012: A qualitative content analysis of Chinese social media reaction to a health promotion event
-
Fung IC, Cai J, Hao Y, Ying Y, Chan BS, Tse ZT, et al. Global Handwashing Day 2012: a qualitative content analysis of Chinese social media reaction to a health promotion event. Western Pac Surveill Response J 2015;6:34-42
-
(2015)
Western Pac Surveill Response J
, vol.6
, pp. 34-42
-
-
Fung, I.C.1
Cai, J.2
Hao, Y.3
Ying, Y.4
Chan, B.S.5
Tse, Z.T.6
-
46
-
-
78649725192
-
Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak
-
Chew C, Eysenbach G. Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 2010;5:e14118
-
(2010)
Plos One
, vol.5
-
-
Chew, C.1
Eysenbach, G.2
-
47
-
-
84874760778
-
Assessing censorship on microblogs in China: Discriminatory keyword analysis and the real-name registration policy. Internet Computing
-
Fu KW, Chan CH, Chau M. Assessing censorship on microblogs in China: discriminatory keyword analysis and the real-name registration policy. Internet Computing, IEEE 2013;17:42-50
-
(2013)
IEEE
, vol.17
, pp. 42-50
-
-
Fu, K.W.1
Chan, C.H.2
Chau, M.3
-
49
-
-
84874787339
-
Reality check for the Chinese microblog space: A random sampling approach
-
Fu KW, Chau M. Reality check for the Chinese microblog space: a random sampling approach. PLoS One 2013;8:e58356
-
(2013)
Plos One
, vol.8
-
-
Fu, K.W.1
Chau, M.2
-
50
-
-
84901343991
-
-
Pew Research Internet Project, cited 2014 Jul 16
-
Pew Research Internet Project. Social networking fact sheet [cited 2014 Jul 16]. Available from: http://www.pewinternet.org /fact-sheets/social-networking-fact-sheet
-
Social Networking Fact Sheet
-
-
|