메뉴 건너뛰기




Volumn , Issue , 2016, Pages 63-67

A new approach for supervised power disaggregation by using a deep recurrent LSTM network

Author keywords

deep recurrent neural network (RNN); long short term memory (LSTM); Non intrusive load monitoring (NILM); supervised power disaggregation

Indexed keywords

BRAIN; FEATURE EXTRACTION; INFORMATION SCIENCE; RECURRENT NEURAL NETWORKS; SIGNAL PROCESSING;

EID: 84964766310     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GlobalSIP.2015.7418157     Document Type: Conference Paper
Times cited : (189)

References (22)
  • 1
    • 0026970695 scopus 로고
    • Nonintrusive appliance load monitoring
    • G. W. Hart, "Nonintrusive appliance load monitoring," Proc. IEEE, vol. 80, pp. 1870-1891, 1992
    • (1992) Proc. IEEE , vol.80 , pp. 1870-1891
    • Hart, G.W.1
  • 2
    • 79953198933 scopus 로고    scopus 로고
    • Nonintrusive appliance load monitoring: Review and outlook
    • M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: Review and outlook," IEEE Trans. Consumer Electronics, vol. 57, pp. 76-84, 2011
    • (2011) IEEE Trans. Consumer Electronics , vol.57 , pp. 76-84
    • Zeifman, M.1    Roth, K.2
  • 3
    • 78650883756 scopus 로고    scopus 로고
    • Disaggregated end-use energy sensing for the smart grid
    • J. Froehlich, E. Larson, et al., "Disaggregated end-use energy sensing for the smart grid," IEEE Trans. Pervasive Computing, vol. 10, pp. 28-39, 2011
    • (2011) IEEE Trans. Pervasive Computing , vol.10 , pp. 28-39
    • Froehlich, J.1    Larson, E.2
  • 4
    • 84871704971 scopus 로고    scopus 로고
    • Nonintrusive load monitoring approaches for disaggregated energy sensing: A survey
    • A. Zoha, A. Gluhak, et al., "Nonintrusive load monitoring approaches for disaggregated energy sensing: A survey," Sensors, vol. 12, pp. 16838-16866, 2012
    • (2012) Sensors , vol.12 , pp. 16838-16866
    • Zoha, A.1    Gluhak, A.2
  • 5
    • 84943142987 scopus 로고    scopus 로고
    • An approach for unsupervised non-intrusive load monitoring of residential appliances
    • K. S. Barsim, R. Streubel, and B. Yang, "An approach for unsupervised non-intrusive load monitoring of residential appliances," in 2. NILM Workshop, 2014
    • (2014) 2. NILM Workshop
    • Barsim, K.S.1    Streubel, R.2    Yang, B.3
  • 6
    • 78650865104 scopus 로고    scopus 로고
    • Circuit-level load monitoring for household energy management
    • A. Marchiori, D. Hakkarinen, et al., "Circuit-level load monitoring for household energy management," IEEE Trans. Pervasive Computing, pp. 40-48, 2011
    • (2011) IEEE Trans. Pervasive Computing , pp. 40-48
    • Marchiori, A.1    Hakkarinen, D.2
  • 7
  • 9
    • 56749149529 scopus 로고    scopus 로고
    • Nonintrusive appliance load monitoring based on integer programming
    • K. Suzuki, S. Inagaki, et al., "Nonintrusive appliance load monitoring based on integer programming," in Proc. SICE Annual Conf., 2008, pp. 2742-2747
    • (2008) Proc. SICE Annual Conf , pp. 2742-2747
    • Suzuki, K.1    Inagaki, S.2
  • 10
    • 84856540082 scopus 로고    scopus 로고
    • A hidden Markov model based procedure for identifying household electric loads
    • T. Zia, D. Bruckner, and A.Zaidi, "A hidden Markov model based procedure for identifying household electric loads," in Proc. IECON, 2011, pp. 3218-3223
    • (2011) Proc. IECON , pp. 3218-3223
    • Zia, T.1    Bruckner, D.2    Zaidi, A.3
  • 12
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • K. Funahashi and Y. Nakamura, "Approximation of dynamical systems by continuous time recurrent neural networks," Neural Networks, 1993
    • (1993) Neural Networks
    • Funahashi, K.1    Nakamura, Y.2
  • 13
    • 84898931970 scopus 로고    scopus 로고
    • Training and analysing deep recurrent neural networks
    • M. Hermans and B. Schrauwen, "Training and analysing deep recurrent neural networks," in Proc. NIPS, 2013
    • (2013) Proc. NIPS
    • Hermans, M.1    Schrauwen, B.2
  • 16
    • 84906979661 scopus 로고    scopus 로고
    • Generating sequenceswith recurrent neural networks
    • abs/1308.0850
    • Alex Graves, "Generating sequenceswith recurrent neural networks," CoRR, vol. abs/1308.0850, 2013
    • (2013) CoRR
    • Graves, A.1
  • 17
    • 84919832465 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • Tony Jebara and Eric P. Xing, Eds. , JMLR Workshop and Conference Proceedings
    • Alex Graves and Navdeep Jaitly, "Towards end-to-end speech recognition with recurrent neural networks," in Proceedings of the 31st International Conference on Machine Learning (ICML-14), Tony Jebara and Eric P. Xing, Eds. 2014, pp. 1764-1772, JMLR Workshop and Conference Proceedings
    • (2014) Proceedings of the 31st International Conference on Machine Learning (ICML-14) , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 18
    • 84872521733 scopus 로고    scopus 로고
    • Stochastic gradient descent tricks
    • Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller, Eds. of Lecture Notes in Computer Science Springer Berlin Heidelberg
    • Léon Bottou, "Stochastic gradient descent tricks," in Neural Networks: Tricks of the Trade, Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller, Eds., vol. 7700 of Lecture Notes in Computer Science, pp. 421-436. Springer Berlin Heidelberg, 2012
    • (2012) Neural Networks: Tricks of the Trade , vol.7700 , pp. 421-436
    • Bottou, L.1
  • 19
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • JMLR.org
    • Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton, "On the importance of initialization and momentum in deep learning.," in ICML (3). 2013, vol. 28 of JMLR Proceedings, pp. 1139-1147, JMLR.org
    • (2013) ICML of JMLR Proceedings , vol.28 , Issue.3 , pp. 1139-1147
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.