-
1
-
-
84964576731
-
Acs summary file technical documentation: 2013 ACS 1-year, 2011-2013 ACS 3-year, and 2009-2013 ACS 5-year data releases
-
American Community Survey Office., United States Census Bureau
-
American Community Survey Office. 2014. ACS summary file technical documentation: 2013 ACS 1-year, 2011-2013 ACS 3-year, and 2009-2013 ACS 5-year data releases. Technical report, United States Census Bureau.
-
(2014)
Technical Report
-
-
-
2
-
-
0025937011
-
Properties of tests for spatial dependence in linear regression models
-
Anselin, L., and Rey, S. 1991. Properties of tests for spatial dependence in linear regression models. Geographical Analysis 23(2): 112-131.
-
(1991)
Geographical Analysis
, vol.23
, Issue.2
, pp. 112-131
-
-
Anselin, L.1
Rey, S.2
-
3
-
-
34247580207
-
Using exploratory spatial data analysis to leverage social indicator databases: The discovery of interesting patterns
-
Anselin, L.; Sridharan, S.; and Gholston, S. 2007. Using exploratory spatial data analysis to leverage social indicator databases: The discovery of interesting patterns. Social Indicators Research 82(2):287-309.
-
(2007)
Social Indicators Research
, vol.82
, Issue.2
, pp. 287-309
-
-
Anselin, L.1
Sridharan, S.2
Gholston, S.3
-
4
-
-
0036862865
-
Under the hood: Issues in the specification and interpretation of spatial regression models
-
Anselin, L. 2002. Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics 27(3): 247-267.
-
(2002)
Agricultural Economics
, vol.27
, Issue.3
, pp. 247-267
-
-
Anselin, L.1
-
5
-
-
84922519611
-
Comparing implementations of estimation methods for spatial econometrics
-
Bivand, R., and Piras, G. 2015. Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software 63(18): 1-36.
-
(2015)
Journal of Statistical Software
, vol.63
, Issue.18
, pp. 1-36
-
-
Bivand, R.1
Piras, G.2
-
6
-
-
84876094340
-
Computing the jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods
-
Bivand, R.; Hauke, J.; and Kossowski, T. 2013. Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis 45(2): 150-179.
-
(2013)
Geographical Analysis
, vol.45
, Issue.2
, pp. 150-179
-
-
Bivand, R.1
Hauke, J.2
Kossowski, T.3
-
7
-
-
85016868365
-
-
edition. Springer, NY
-
Bivand, R. S.; Pebesma, E.; and Gomez-Rubio, V. 2013. Applied spatial data analysis with R, Second edition. Springer, NY.
-
(2013)
Applied Spatial Data Analysis with R, Second
-
-
Bivand, R.S.1
Pebesma, E.2
Gomez-Rubio, V.3
-
8
-
-
80052648113
-
Friendship and mobility: User movement in location-based social networks
-
Cho, E.; Myers, S. A.; and Leskovec, J. 2011. Friendship and mobility: User movement in location-based social networks. KDD'11, 1082-1090.
-
(2011)
KDD'11
, pp. 1082-1090
-
-
Cho, E.1
Myers, S.A.2
Leskovec, J.3
-
10
-
-
84878598493
-
Beyond the geotag: Situating big data and leveraging the potential of the geoweb
-
Crampton, J. W.; Graham, M.; Poorthuis, A.; Shelton, T.; Stephens, M.; Wilson, M. W.; and Zook, M. 2013. Beyond the geotag: Situating "big data" and leveraging the potential of the geoweb. Cartography and Geographic Information Science 40(2): 130-139.
-
(2013)
Cartography and Geographic Information Science
, vol.40
, Issue.2
, pp. 130-139
-
-
Crampton, J.W.1
Graham, M.2
Poorthuis, A.3
Shelton, T.4
Stephens, M.5
Wilson, M.W.6
Zook, M.7
-
12
-
-
80053230843
-
A latent variable model for geographic lexical variation
-
Eisenstein, J.; O'Connor, B.; Smith, N. A.; and Xing, E. P. 2010. A latent variable model for geographic lexical variation. EMNLP'10, 1277-1287.
-
(2010)
EMNLP'10
, pp. 1277-1287
-
-
Eisenstein, J.1
O'Connor, B.2
Smith, N.A.3
Xing, E.P.4
-
13
-
-
84893740453
-
Tweets, tweeps, and signifying communication and cultural performance on black twitter
-
Florini, S. 2014. Tweets, tweeps, and signifying Communication and cultural performance on "Black Twitter". Television & New Media 15(3):223-237.
-
(2014)
Television & New Media
, vol.15
, Issue.3
, pp. 223-237
-
-
Florini, S.1
-
14
-
-
84873693383
-
Characterizing urban landscapes using geolocated tweets
-
Frias-Martinez, V.; Soto, V.; Hohwald, H.; and Frias-Martinez, E. 2012. Characterizing urban landscapes using geolocated tweets. PASSAT/SocialCo'12, 239-248.
-
(2012)
PASSAT/SocialCo'12
, pp. 239-248
-
-
Frias-Martinez, V.1
Soto, V.2
Hohwald, H.3
Frias-Martinez, E.4
-
16
-
-
84878526821
-
What are we tweeting about obesity?: Mapping tweets with topic modeling and geographic information system
-
Ghosh, D. D., and Guha, R. 2013. What are we tweeting about obesity?: Mapping tweets with topic modeling and geographic information system. Cartography and Geographic Information Science 40(2):90-102.
-
(2013)
Cartography and Geographic Information Science
, vol.40
, Issue.2
, pp. 90-102
-
-
Ghosh, D.D.1
Guha, R.2
-
17
-
-
84908226358
-
Where in the world are you? Geolocation and language identification in twitter
-
Graham, M.; Hale, S. A.; and Gaffney, D. 2014. Where in the world are you?: Geolocation and language identification in Twitter. The Professional Geographer 66(4):568-578.
-
(2014)
The Professional Geographer
, vol.66
, Issue.4
, pp. 568-578
-
-
Graham, M.1
Hale, S.A.2
Gaffney, D.3
-
18
-
-
84902269350
-
Detecting non-personal and spam users on geo-tagged twitter network
-
Guo, D., and Chen, C. 2014. Detecting non-personal and spam users on geo-tagged Twitter network. Transactions in GJS 18(3):370-384.
-
(2014)
Transactions in GJS
, vol.18
, Issue.3
, pp. 370-384
-
-
Guo, D.1
Chen, C.2
-
19
-
-
84909979768
-
A tale of cities: Urban biases in volunteered geographic information
-
Hecht, B., and Stephens, M. 2014. A tale of cities: Urban biases in volunteered geographic information. ICWSM'14, 197-205.
-
(2014)
ICWSM'14
, pp. 197-205
-
-
Hecht, B.1
Stephens, M.2
-
20
-
-
79958085453
-
Tweets from Justin Bieber's heart: The dynamics of the location field in user profiles
-
Hecht, B.; Hong, L.; Suh, B.; and Chi, E. H. 2011. Tweets from Justin Bieber's heart: The dynamics of the location field in user profiles. CHI'11, 237-246.
-
(2011)
CHI'11
, pp. 237-246
-
-
Hecht, B.1
Hong, L.2
Suh, B.3
Chi, E.H.4
-
21
-
-
84860842710
-
Discovering geographical topics in the twitter stream
-
Hong, L.; Ahmed, A.; Gurumurthy, S.; Smola, A. J.; and Tsiout-siouliklis, K. 2012. Discovering geographical topics in the Twitter stream. WWW'12, 769-778.
-
(2012)
WWW'12
, pp. 769-778
-
-
Hong, L.1
Ahmed, A.2
Gurumurthy, S.3
Smola, A.J.4
Tsiout-Siouliklis, K.5
-
22
-
-
84887290840
-
Spatio-temporal dynamics of online memes: A study of geo-tagged tweets
-
Kamath, K. Y.; Caverlee, J.; Lee, K.; and Cheng, Z. 2013. Spatio-temporal dynamics of online memes: A study of geo-tagged tweets. WWW'13, 667-678.
-
(2013)
WWW'13
, pp. 667-678
-
-
Kamath, K.Y.1
Caverlee, J.2
Lee, K.3
Cheng, Z.4
-
23
-
-
83255165405
-
I m eating a sandwich in Glasgow Modeling locations with tweets
-
Kinsella, S.; Murdock, V.; and O'Hare, N. 2011. I m eating a sandwich in Glasgow": Modeling locations with tweets. SMUC'11 61-68.
-
(2011)
SMUC'11
, pp. 61-68
-
-
Kinsella, S.1
Murdock, V.2
O'Hare, N.3
-
24
-
-
84907409170
-
A behavior analytics approach to identifying tweets from crisis regions
-
Kumar, S.; Hu, X.; and Liu, H. 2014. A behavior analytics approach to identifying tweets from crisis regions. HT'14, 255-260.
-
(2014)
HT'14
, pp. 255-260
-
-
Kumar, S.1
Hu, X.2
Liu, H.3
-
25
-
-
84878996922
-
Mapping the global twitter heartbeat: The geography of twitter
-
Leetaru, K.; Wang, S.; Cao, G.; Padmanabhan, A.; and Shook, E. 2013. Mapping the global Twitter heartbeat: The geography of Twitter. First Monday 18(5).
-
(2013)
First Monday
, vol.18
, Issue.5
-
-
Leetaru, K.1
Wang, S.2
Cao, G.3
Padmanabhan, A.4
Shook, E.5
-
26
-
-
84933533294
-
The ripple of fear, sympathy and solidarity during the Boston bombings
-
Lin, Y.-R., and Margolin, D. 2014. The ripple of fear, sympathy and solidarity during the Boston bombings. EPJ Data Science 3(1).
-
(2014)
EPJ Data Science
, vol.3
, Issue.1
-
-
Lin, Y.-R.1
Margolin, D.2
-
27
-
-
84909974345
-
The tweets they are a-changin: Evolution of twitter users and behavior
-
Liu, Y.; Kliman-Silver, C.; and Mislove, A. 2014. The tweets they are a-changin: Evolution of Twitter users and behavior. ICWSM'14.
-
(2014)
ICWSM'14
-
-
Liu, Y.1
Kliman-Silver, C.2
Mislove, A.3
-
29
-
-
85070357722
-
Understanding the demographics of twitter users
-
Mislove, A.; Lehmann, S.; Ahn, Y.-Y.; Onnela, J.-P.; and Rosen-quist, J. 2011. Understanding the demographics of Twitter users. ICWSM'11, 554-557.
-
(2011)
ICWSM'11
, pp. 554-557
-
-
Mislove, A.1
Lehmann, S.2
Ahn, Y.-Y.3
Onnela, J.-P.4
Rosen-Quist, J.5
-
30
-
-
84878443397
-
The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place
-
Mitchell, L.; Frank, M. R.; Harris, K. D.; Dodds, P. S.; and Dan-forth, C. M. 2013. The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. Plos One 8(5):e64417.
-
(2013)
Plos One
, vol.8
, Issue.5
, pp. e64417
-
-
Mitchell, L.1
Frank, M.R.2
Harris, K.D.3
Dodds, P.S.4
Dan-Forth, C.M.5
-
31
-
-
84892704954
-
Is the sample good enough?: Comparing data from twitter's streaming API with twitter's firehose
-
Morstatter, F.; Pfeffer, J.; Liu, H.; and Carley, K. 2013. Is the sample good enough?: Comparing data from Twitter's streaming API with Twitter's firehose. ICWSM'13.
-
(2013)
ICWSM'13
-
-
Morstatter, F.1
Pfeffer, J.2
Liu, H.3
Carley, K.4
-
32
-
-
85129712362
-
Finding eyewitness tweets during crises
-
Morstatter, F.; Lubold, N.; Pon-Barry, H.; Pfeffer, J.; and Liu, H. 2014. Finding eyewitness tweets during crises. ACL LACSS'14, 23-27.
-
(2014)
ACL LACSS'14
, pp. 23-27
-
-
Morstatter, F.1
Lubold, N.2
Pon-Barry, H.3
Pfeffer, J.4
Liu, H.5
-
33
-
-
84990955096
-
When is it biased?: Assessing the representativeness of twitter's streaming API
-
Morstatter, F.; Pfeffer, J.; and Liu, H. 2014. When is it biased?: Assessing the representativeness of Twitter's streaming API. WWW Companion'14, 555-556.
-
(2014)
WWW Companion'14
, pp. 555-556
-
-
Morstatter, F.1
Pfeffer, J.2
Liu, H.3
-
34
-
-
84910107444
-
A case study of the New York City 2012-2013 influenza season with daily geocoded twitter data from temporal and spatiotemporal perspectives
-
Nagar, R.; Yuan, Q.; Freifeld, C. C.; Santillana, M.; Nojima, A.; Chunara, R.; and Brownstein, S. J. 2014. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives. J Med Internet Res 16(10):e236.
-
(2014)
J Med Internet Res
, vol.16
, Issue.10
, pp. e236
-
-
Nagar, R.1
Yuan, Q.2
Freifeld, C.C.3
Santillana, M.4
Nojima, A.5
Chunara, R.6
Brownstein, S.J.7
-
35
-
-
84922011874
-
Social media for large studies of behavior
-
Ruths, D., and Pfeffer, J. 2014. Social media for large studies of behavior. Science 346(6213): 1063-1064.
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1063-1064
-
-
Ruths, D.1
Pfeffer, J.2
-
37
-
-
84894218262
-
Mapping the data shadows of hurricane sandy: Uncovering the sociospatial dimensions of'big data'
-
Shelton, T.; Poorthuis, A.; Graham, M.; and Zook, M. 2014. Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of'big data'. Geoforum 52(0): 167-179.
-
(2014)
Geo forum
, vol.52
, pp. 167-179
-
-
Shelton, T.1
Poorthuis, A.2
Graham, M.3
Zook, M.4
-
39
-
-
84964669496
-
Space, time, and hurricanes: Investigating the spatiotemporal relationship among social media use, donations, and disasters
-
Robert H. Smith School
-
Sylvester, J.; Healey, J.; Wang, C.; and Rand, W. M. 2014. Space, time, and hurricanes: Investigating the spatiotemporal relationship among social media use, donations, and disasters. Technical Report Research Paper No. RHS 2441314, Robert H. Smith School.
-
(2014)
Technical Report Research Paper No. RHS 2441314
-
-
Sylvester, J.1
Healey, J.2
Wang, C.3
Rand, W.M.4
-
41
-
-
84909954481
-
Big questions for social media big data: Representativeness, validity and other methodological pitfalls
-
Tufekci, Z. 2014. Big questions for social media big data: Representativeness, validity and other methodological pitfalls. ICWSM'14, 505-514.
-
(2014)
ICWSM'14
, pp. 505-514
-
-
Tufekci, Z.1
-
43
-
-
77956054450
-
How far does a tweet travel? Information brokers in the twitter verse
-
6:1-6:4
-
van Liere, D. 2010. How far does a tweet travel?: Information brokers in the Twitter verse. MSM'10, 6:1-6:4.
-
(2010)
MSM'10
-
-
Van Liere, D.1
-
44
-
-
84988302530
-
Real time road traffic monitoring alert based on incremental learning from tweets
-
Wang, D.; Al-Rubaie, A.; Davies, J.; and Clarke, S. 2014a. Real time road traffic monitoring alert based on incremental learning from tweets. EALS'14, 50-57.
-
(2014)
EALS'14
, pp. 50-57
-
-
Wang, D.1
Al-Rubaie, A.2
Davies, J.3
Clarke, S.4
-
45
-
-
84964570728
-
On spatial measures for geotagged social media content
-
Wang, X.; Gaugel, T.;; and Keller, M. 2014b. On spatial measures for geotagged social media contents. MUSE'14, 35-50.
-
(2014)
MUSE'14
, pp. 35-50
-
-
Wang, X.1
Gaugel, T.2
Keller, M.3
-
46
-
-
84992119955
-
Who, where, when and what: Discover spatio-temporal topics for twitter users
-
Yuan, Q.; Cong, G.; Ma, Z.; Sun, A.; and Thalmann, N. M. 2013. Who, where, when and what: Discover spatio-temporal topics for Twitter users. KDD'13, 605-613.
-
(2013)
KDD'13
, pp. 605-613
-
-
Yuan, Q.1
Cong, G.2
Ma, Z.3
Sun, A.4
Thalmann, N.M.5
|