-
1
-
-
34247169614
-
Medical implants based on microsystems
-
Mokwa, W. Medical implants based on microsystems. Meas. Sci. Technol. 18, R47 (2007).
-
(2007)
Meas. Sci. Technol
, vol.18
, pp. R47
-
-
Mokwa, W.1
-
2
-
-
84905500882
-
Insight: Implantable medical devices
-
Meng, E. & Sheybani, R. Insight: implantable medical devices. Lab Chip 14, 3233-3240 (2014).
-
(2014)
Lab Chip
, vol.14
, pp. 3233-3240
-
-
Meng, E.1
Sheybani, R.2
-
4
-
-
0030641429
-
Improvements in pacemaker energy consumption and functional capability: Four decades of progress
-
Ohm, O. J. & Danilovic, D. Improvements in pacemaker energy consumption and functional capability: four decades of progress. Pacing. Clin. Electrophysiol. 20, 2-9 (1997).
-
(1997)
Pacing. Clin. Electrophysiol
, vol.20
, pp. 2-9
-
-
Ohm, O.J.1
Danilovic, D.2
-
5
-
-
84906875531
-
In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator
-
Zheng, Q. et al. In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator. Adv. Mater. 26, 5851-5856 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 5851-5856
-
-
Zheng, Q.1
-
6
-
-
84940062712
-
Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems
-
Hinchet, R. & Kim, S. W. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano 9, 7742-7745 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 7742-7745
-
-
Hinchet, R.1
Kim, S.W.2
-
7
-
-
84940061543
-
Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation
-
Tang, W. et al. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation. ACS Nano 9, 7867-7873 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 7867-7873
-
-
Tang, W.1
-
8
-
-
84874967575
-
Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
-
Zhang, X. S. et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168-1172 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 1168-1172
-
-
Zhang, X.S.1
-
9
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533-9557 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
10
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
11
-
-
77955583635
-
Flexible high-output nanogenerator based on lateral ZnO nanowire array
-
Zhu, G., Yang, R., Wang, S. & Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151-3155 (2010).
-
(2010)
Nano Lett
, vol.10
, pp. 3151-3155
-
-
Zhu, G.1
Yang, R.2
Wang, S.3
Wang, Z.L.4
-
12
-
-
84877746590
-
Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor
-
Lee, S. et al. Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor. Adv. Funct. Mater. 23, 2445-2449 (2013).
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 2445-2449
-
-
Lee, S.1
-
13
-
-
84894500589
-
Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion
-
Lee, S. et al. Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion. Adv. Funct. Mater. 24, 1163-1168 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 1163-1168
-
-
Lee, S.1
-
14
-
-
84893477161
-
Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
-
Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927-1932 (2014).
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 1927-1932
-
-
Dagdeviren, C.1
-
15
-
-
84856427647
-
Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
-
Karami, M. A. & Inman, D. J. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012).
-
(2012)
Appl. Phys. Lett
, vol.100
-
-
Karami, M.A.1
Inman, D.J.2
-
16
-
-
79952597094
-
Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons
-
Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331-1336 (2011).
-
(2011)
Nano Lett
, vol.11
, pp. 1331-1336
-
-
Qi, Y.1
-
17
-
-
77953310763
-
1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers
-
Chen, X., Xu, S., Yao, N. & Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133-2137 (2010).
-
(2010)
Nano Lett
, vol.10
, pp. 2133-2137
-
-
Chen, X.1
Xu, S.2
Yao, N.3
Shi, Y.4
-
18
-
-
77956097448
-
Nanotechnology-enabled flexible and biocompatible energy harvesting
-
Qi, Y. & McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275-1285 (2010).
-
(2010)
Energy Environ. Sci
, vol.3
, pp. 1275-1285
-
-
Qi, Y.1
McAlpine, M.C.2
-
19
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
Fan, F. R. et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109-3114 (2012).
-
(2012)
Nano Lett
, vol.12
, pp. 3109-3114
-
-
Fan, F.R.1
-
20
-
-
84959432874
-
Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing
-
Dhakar, L. et al. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Sci. Rep. 6, 22253 (2016).
-
(2016)
Sci. Rep
, vol.6
-
-
Dhakar, L.1
-
21
-
-
84955668137
-
An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
-
Dhakar, L., Pitchappa, P., Tay, F. E. H. & Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 19, 532- 540 (2015).
-
(2015)
Nano Energy
, vol.19
, pp. 532-540
-
-
Dhakar, L.1
Pitchappa, P.2
Tay, F.E.H.3
Lee, C.4
-
22
-
-
42549138834
-
The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting
-
Shen, D. et al. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. and Microeng. 18, 055017 (2008).
-
(2008)
J. Micromech. and Microeng
, vol.18
-
-
Shen, D.1
-
23
-
-
80053573320
-
Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
-
Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Microelectromech. Syst. 20, 1131-1142 (2011).
-
(2011)
J. Microelectromech. Syst
, vol.20
, pp. 1131-1142
-
-
Liu, H.1
Tay, C.J.2
Quan, C.3
Kobayashi, T.4
Lee, C.5
-
24
-
-
77957588625
-
Modeling and characterization of piezoelectric-mode MEMS energy harvester
-
Park, J. C., Park, J. Y. & Lee, Y. P. Modeling and characterization of piezoelectric-mode MEMS energy harvester. J. Microelectromech. Syst. 19, 1215-1222 (2010).
-
(2010)
J. Microelectromech. Syst
, vol.19
, pp. 1215-1222
-
-
Park, J.C.1
Park, J.Y.2
Lee, Y.P.3
-
25
-
-
84953728951
-
Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice
-
Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969-974 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 969-974
-
-
Montgomery, K.L.1
-
26
-
-
43249129654
-
A frequency control method for regulating wireless power to implantable devices
-
Si, P., Hu, A. P., Malpas, S. & Budgett, D. A frequency control method for regulating wireless power to implantable devices. IEEE Trans. Biomed. Circuits Syst. 2, 22-29 (2008).
-
(2008)
IEEE Trans. Biomed. Circuits Syst
, vol.2
, pp. 22-29
-
-
Si, P.1
Hu, A.P.2
Malpas, S.3
Budgett, D.4
-
27
-
-
67650672219
-
In vitro and in vivo studies on wireless powering of medical sensors and implantable devices
-
Zhang, F., Liu, X., Hackworth, S., Sclabassi, R. J. & Sun, M. In vitro and in vivo studies on wireless powering of medical sensors and implantable devices. IEEE/NIH Life Sci. Syst. and Applicat. Workshop 84-87, 10.1109/LISSA.2009.4906715 (2009).
-
(2009)
IEEE/NIH Life Sci. Syst. and Applicat. Workshop 84-87, 10.1109/LISSA
, vol.2009
-
-
Zhang, F.1
Liu, X.2
Hackworth, S.3
Sclabassi, R.J.4
Sun, M.5
-
28
-
-
80054875703
-
An ultrasonically powered implantable micro-oxygen generator (IMOG)
-
Maleki, T. et al. An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 58, 3104-3111 (2011).
-
(2011)
IEEE Trans. Biomed. Eng
, vol.58
, pp. 3104-3111
-
-
Maleki, T.1
-
29
-
-
79960346562
-
Miniature ultrasonically powered wireless nerve cuff stimulator
-
Larson, P. J. & Towe, B. C. Miniature ultrasonically powered wireless nerve cuff stimulator. IEEE/EMBS 5th Int. Conf. Neural Eng. 265-268, 10.1109/NER.2011.5910538 (2011).
-
(2011)
IEEE/EMBS 5th Int. Conf. Neural Eng
, pp. 265-268
-
-
Larson, P.J.1
Towe, B.C.2
-
30
-
-
84902148341
-
Resonant ultrasonic wireless power transmission for bio-implants. Proc. SPIE 9057
-
Lee, S. Q., Youm, W., Hwang, G., Moon, K. S. & Ozturk, Y. Resonant ultrasonic wireless power transmission for bio-implants. Proc. SPIE 9057, Active and Passive Smart Structures and Integrated Syst. 90570J-90570J, 10.1117/12.2046600 (2014).
-
(2014)
Active and Passive Smart Structures and Integrated Syst
, pp. 90570J-90570J
-
-
Lee, S.Q.1
Youm, W.2
Hwang, G.3
Moon, K.S.4
Ozturk, Y.5
-
31
-
-
77949487799
-
Ultrasonic transcutaneous energy transfer for powering implanted devices
-
Ozeri, S. & Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50, 556-566 (2010).
-
(2010)
Ultrasonics
, vol.50
, pp. 556-566
-
-
Ozeri, S.1
Shmilovitz, D.2
-
32
-
-
84877922720
-
Inductive power transfer
-
Covic, G. & Boys, J. T. Inductive power transfer. Proc. IEEE 101, 1276-1289 (2013).
-
(2013)
Proc. IEEE
, vol.101
, pp. 1276-1289
-
-
Covic, G.1
Boys, J.T.2
-
33
-
-
84900424782
-
A critical review of recent progress in mid-range wireless power transfer
-
Hui, S. Y. R., Zhong, W. & Lee, C. K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500-4511 (2014).
-
(2014)
IEEE Trans. Power Electron
, vol.29
, pp. 4500-4511
-
-
Hui, S.Y.R.1
Zhong, W.2
Lee, C.K.3
-
34
-
-
84866297893
-
Acoustic energy transfer: A review
-
Roes, M. G., Duarte, J. L., Hendrix, M. A. & Lomonova, E. Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60, 242-248 (2013).
-
(2013)
IEEE Trans. Ind. Electron
, vol.60
, pp. 242-248
-
-
Roes, M.G.1
Duarte, J.L.2
Hendrix, M.A.3
Lomonova, E.4
-
35
-
-
84925953884
-
Contactless energy transfer using acoustic approach-A review
-
Zaid, T., Saat, S., Yusop, Y. & Jamal, N. Contactless energy transfer using acoustic approach-A review. Int. Conf. Comput., Commun., and Control Technology 376-381, 10.1109/I4CT.2014.6914209 (2014).
-
(2014)
Int. Conf. Comput., Commun., and Control Technology
, pp. 376-381
-
-
Zaid, T.1
Saat, S.2
Yusop, Y.3
Jamal, N.4
-
36
-
-
78651355479
-
Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer
-
Sample, A. P., Meyer, D. & Smith, J. R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58, 544-554 (2011).
-
(2011)
IEEE Trans. Ind. Electron
, vol.58
, pp. 544-554
-
-
Sample, A.P.1
Meyer, D.2
Smith, J.R.3
-
37
-
-
34447309715
-
Wireless power transfer via strongly coupled magnetic resonances
-
Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83-86 (2007).
-
(2007)
Science
, vol.317
, pp. 83-86
-
-
Kurs, A.1
-
39
-
-
77955203592
-
Ultrasonic vs. Inductive power delivery for miniature biomedical implants
-
Denisov, A. & Yeatman, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. Int. Conf. Body Sensor Networks 84-89, 10.1109/BSN.2010.27 (2010).
-
(2010)
Int. Conf. Body Sensor Networks
, pp. 84-89
-
-
Denisov, A.1
Yeatman, E.2
-
40
-
-
0042263281
-
Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers
-
Hu, Y., Zhang, X., Yang, J. & Jiang, Q. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Control 50, 773-781 (2003).
-
(2003)
IEEE Trans. Ultrason., Ferroelect., Freq. Control
, vol.50
, pp. 773-781
-
-
Hu, Y.1
Zhang, X.2
Yang, J.3
Jiang, Q.4
-
41
-
-
84856530710
-
Contactless energy transfer through air by means of ultrasound. IECON 37th Annual Conf
-
Roes, M. G. L., Hendrix, M. A. M. & Duarte, J. L. Contactless energy transfer through air by means of ultrasound. IECON 37th Annual Conf. IEEE Ind. Electron. Soc. 1238-1243, 10.1109/IECON.2011.6119486 (2011).
-
(2011)
IEEE Ind. Electron. Soc
, pp. 1238-1243
-
-
Roes, M.G.L.1
Hendrix, M.A.M.2
Duarte, J.L.3
-
42
-
-
77953256208
-
Ultrasonic transcutaneous energy transfer using a continuous wave 650kHz Gaussian shaded transmitter
-
Ozeri, S., Shmilovitz, D., Singer, S. & Wang, C. C. Ultrasonic transcutaneous energy transfer using a continuous wave 650kHz Gaussian shaded transmitter. Ultrasonics 50, 666-674 (2010).
-
(2010)
Ultrasonics
, vol.50
, pp. 666-674
-
-
Ozeri, S.1
Shmilovitz, D.2
Singer, S.3
Wang, C.C.4
-
43
-
-
0035328116
-
Power and information transmission to implanted medical device using ultrasonic
-
Kawanabe, H., Katane, T., Saotome, H., Saito, O. & Kobayashi, K. Power and information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 40, 3865 (2001).
-
(2001)
Jpn. J. Appl. Phys
, vol.40
, pp. 3865
-
-
Kawanabe, H.1
Katane, T.2
Saotome, H.3
Saito, O.4
Kobayashi, K.5
-
44
-
-
0036578142
-
Power and interactive information transmission to implanted medical device using ultrasonic
-
Suzuki, S. N. et al. Power and interactive information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 41, 3600 (2002).
-
(2002)
Jpn. J. Appl. Phys
, vol.41
, pp. 3600
-
-
Suzuki, S.N.1
-
45
-
-
34548130229
-
Ultrasonic power and data link for wireless implantable applications
-
Arra, S., Leskinen, J., Heikkilä, J. & Vanhala, J. Ultrasonic power and data link for wireless implantable applications. ISWPC 2nd Int. Symp Wireless Pervasive Computing 10.1109/ISWPC.2007.342668 (2007).
-
(2007)
ISWPC 2nd Int. Symp Wireless Pervasive Computing 10.1109/ISWPC
, vol.2007
-
-
Arra, S.1
Leskinen, J.2
Heikkilä, J.3
Vanhala, J.4
-
46
-
-
84940397554
-
A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion
-
Wang, T., Sawada, R. & Lee, C. A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion. IEEE Electron Device Lett. 36, 957-959 (2015).
-
(2015)
IEEE Electron Device Lett
, vol.36
, pp. 957-959
-
-
Wang, T.1
Sawada, R.2
Lee, C.3
-
47
-
-
84959513030
-
Zero-Bending Piezoelectric Micromachined Ultrasonic Transducer (pMUT) with Enhanced Transmitting Performance
-
Wang, T. & Lee, C. Zero-Bending Piezoelectric Micromachined Ultrasonic Transducer (pMUT) With Enhanced Transmitting Performance. J. Microelectromech. Syst. 24, 2083-2091 (2015).
-
(2015)
J. Microelectromech. Syst
, vol.24
, pp. 2083-2091
-
-
Wang, T.1
Lee, C.2
-
48
-
-
84923813726
-
Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth
-
Wang, T., Kobayashi, T. & Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. App. Phycs. Lett. 106, 013501 (2015).
-
(2015)
App. Phycs. Lett
, vol.106
-
-
Wang, T.1
Kobayashi, T.2
Lee, C.3
|