메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices

Author keywords

[No Author keywords available]

Indexed keywords

DEVICES; ENERGY TRANSFER; EQUIPMENT DESIGN; MICROELECTROMECHANICAL SYSTEM; POWER SUPPLY; PROSTHESES AND ORTHOSES; ULTRASOUND;

EID: 84964584112     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep24946     Document Type: Article
Times cited : (177)

References (48)
  • 1
    • 34247169614 scopus 로고    scopus 로고
    • Medical implants based on microsystems
    • Mokwa, W. Medical implants based on microsystems. Meas. Sci. Technol. 18, R47 (2007).
    • (2007) Meas. Sci. Technol , vol.18 , pp. R47
    • Mokwa, W.1
  • 2
    • 84905500882 scopus 로고    scopus 로고
    • Insight: Implantable medical devices
    • Meng, E. & Sheybani, R. Insight: implantable medical devices. Lab Chip 14, 3233-3240 (2014).
    • (2014) Lab Chip , vol.14 , pp. 3233-3240
    • Meng, E.1    Sheybani, R.2
  • 4
    • 0030641429 scopus 로고    scopus 로고
    • Improvements in pacemaker energy consumption and functional capability: Four decades of progress
    • Ohm, O. J. & Danilovic, D. Improvements in pacemaker energy consumption and functional capability: four decades of progress. Pacing. Clin. Electrophysiol. 20, 2-9 (1997).
    • (1997) Pacing. Clin. Electrophysiol , vol.20 , pp. 2-9
    • Ohm, O.J.1    Danilovic, D.2
  • 5
    • 84906875531 scopus 로고    scopus 로고
    • In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator
    • Zheng, Q. et al. In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator. Adv. Mater. 26, 5851-5856 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 5851-5856
    • Zheng, Q.1
  • 6
    • 84940062712 scopus 로고    scopus 로고
    • Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems
    • Hinchet, R. & Kim, S. W. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano 9, 7742-7745 (2015).
    • (2015) ACS Nano , vol.9 , pp. 7742-7745
    • Hinchet, R.1    Kim, S.W.2
  • 7
    • 84940061543 scopus 로고    scopus 로고
    • Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation
    • Tang, W. et al. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation. ACS Nano 9, 7867-7873 (2015).
    • (2015) ACS Nano , vol.9 , pp. 7867-7873
    • Tang, W.1
  • 8
    • 84874967575 scopus 로고    scopus 로고
    • Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
    • Zhang, X. S. et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168-1172 (2013).
    • (2013) Nano Lett , vol.13 , pp. 1168-1172
    • Zhang, X.S.1
  • 9
    • 84888868810 scopus 로고    scopus 로고
    • Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
    • Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533-9557 (2013).
    • (2013) ACS Nano , vol.7 , pp. 9533-9557
    • Wang, Z.L.1
  • 10
    • 33645810366 scopus 로고    scopus 로고
    • Piezoelectric nanogenerators based on zinc oxide nanowire arrays
    • Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
    • (2006) Science , vol.312 , pp. 242-246
    • Wang, Z.L.1    Song, J.2
  • 11
    • 77955583635 scopus 로고    scopus 로고
    • Flexible high-output nanogenerator based on lateral ZnO nanowire array
    • Zhu, G., Yang, R., Wang, S. & Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151-3155 (2010).
    • (2010) Nano Lett , vol.10 , pp. 3151-3155
    • Zhu, G.1    Yang, R.2    Wang, S.3    Wang, Z.L.4
  • 12
    • 84877746590 scopus 로고    scopus 로고
    • Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor
    • Lee, S. et al. Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor. Adv. Funct. Mater. 23, 2445-2449 (2013).
    • (2013) Adv. Funct. Mater , vol.23 , pp. 2445-2449
    • Lee, S.1
  • 13
    • 84894500589 scopus 로고    scopus 로고
    • Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion
    • Lee, S. et al. Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion. Adv. Funct. Mater. 24, 1163-1168 (2014).
    • (2014) Adv. Funct. Mater , vol.24 , pp. 1163-1168
    • Lee, S.1
  • 14
    • 84893477161 scopus 로고    scopus 로고
    • Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
    • Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927-1932 (2014).
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 1927-1932
    • Dagdeviren, C.1
  • 15
    • 84856427647 scopus 로고    scopus 로고
    • Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
    • Karami, M. A. & Inman, D. J. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012).
    • (2012) Appl. Phys. Lett , vol.100
    • Karami, M.A.1    Inman, D.J.2
  • 16
    • 79952597094 scopus 로고    scopus 로고
    • Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons
    • Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331-1336 (2011).
    • (2011) Nano Lett , vol.11 , pp. 1331-1336
    • Qi, Y.1
  • 17
    • 77953310763 scopus 로고    scopus 로고
    • 1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers
    • Chen, X., Xu, S., Yao, N. & Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133-2137 (2010).
    • (2010) Nano Lett , vol.10 , pp. 2133-2137
    • Chen, X.1    Xu, S.2    Yao, N.3    Shi, Y.4
  • 18
    • 77956097448 scopus 로고    scopus 로고
    • Nanotechnology-enabled flexible and biocompatible energy harvesting
    • Qi, Y. & McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275-1285 (2010).
    • (2010) Energy Environ. Sci , vol.3 , pp. 1275-1285
    • Qi, Y.1    McAlpine, M.C.2
  • 19
    • 84862289254 scopus 로고    scopus 로고
    • Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
    • Fan, F. R. et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109-3114 (2012).
    • (2012) Nano Lett , vol.12 , pp. 3109-3114
    • Fan, F.R.1
  • 20
    • 84959432874 scopus 로고    scopus 로고
    • Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing
    • Dhakar, L. et al. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Sci. Rep. 6, 22253 (2016).
    • (2016) Sci. Rep , vol.6
    • Dhakar, L.1
  • 21
    • 84955668137 scopus 로고    scopus 로고
    • An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
    • Dhakar, L., Pitchappa, P., Tay, F. E. H. & Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 19, 532- 540 (2015).
    • (2015) Nano Energy , vol.19 , pp. 532-540
    • Dhakar, L.1    Pitchappa, P.2    Tay, F.E.H.3    Lee, C.4
  • 22
    • 42549138834 scopus 로고    scopus 로고
    • The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting
    • Shen, D. et al. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. and Microeng. 18, 055017 (2008).
    • (2008) J. Micromech. and Microeng , vol.18
    • Shen, D.1
  • 23
    • 80053573320 scopus 로고    scopus 로고
    • Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
    • Liu, H., Tay, C. J., Quan, C., Kobayashi, T. & Lee, C. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J. Microelectromech. Syst. 20, 1131-1142 (2011).
    • (2011) J. Microelectromech. Syst , vol.20 , pp. 1131-1142
    • Liu, H.1    Tay, C.J.2    Quan, C.3    Kobayashi, T.4    Lee, C.5
  • 24
    • 77957588625 scopus 로고    scopus 로고
    • Modeling and characterization of piezoelectric-mode MEMS energy harvester
    • Park, J. C., Park, J. Y. & Lee, Y. P. Modeling and characterization of piezoelectric-mode MEMS energy harvester. J. Microelectromech. Syst. 19, 1215-1222 (2010).
    • (2010) J. Microelectromech. Syst , vol.19 , pp. 1215-1222
    • Park, J.C.1    Park, J.Y.2    Lee, Y.P.3
  • 25
    • 84953728951 scopus 로고    scopus 로고
    • Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice
    • Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969-974 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 969-974
    • Montgomery, K.L.1
  • 26
    • 43249129654 scopus 로고    scopus 로고
    • A frequency control method for regulating wireless power to implantable devices
    • Si, P., Hu, A. P., Malpas, S. & Budgett, D. A frequency control method for regulating wireless power to implantable devices. IEEE Trans. Biomed. Circuits Syst. 2, 22-29 (2008).
    • (2008) IEEE Trans. Biomed. Circuits Syst , vol.2 , pp. 22-29
    • Si, P.1    Hu, A.P.2    Malpas, S.3    Budgett, D.4
  • 28
    • 80054875703 scopus 로고    scopus 로고
    • An ultrasonically powered implantable micro-oxygen generator (IMOG)
    • Maleki, T. et al. An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 58, 3104-3111 (2011).
    • (2011) IEEE Trans. Biomed. Eng , vol.58 , pp. 3104-3111
    • Maleki, T.1
  • 29
    • 79960346562 scopus 로고    scopus 로고
    • Miniature ultrasonically powered wireless nerve cuff stimulator
    • Larson, P. J. & Towe, B. C. Miniature ultrasonically powered wireless nerve cuff stimulator. IEEE/EMBS 5th Int. Conf. Neural Eng. 265-268, 10.1109/NER.2011.5910538 (2011).
    • (2011) IEEE/EMBS 5th Int. Conf. Neural Eng , pp. 265-268
    • Larson, P.J.1    Towe, B.C.2
  • 31
    • 77949487799 scopus 로고    scopus 로고
    • Ultrasonic transcutaneous energy transfer for powering implanted devices
    • Ozeri, S. & Shmilovitz, D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50, 556-566 (2010).
    • (2010) Ultrasonics , vol.50 , pp. 556-566
    • Ozeri, S.1    Shmilovitz, D.2
  • 32
    • 84877922720 scopus 로고    scopus 로고
    • Inductive power transfer
    • Covic, G. & Boys, J. T. Inductive power transfer. Proc. IEEE 101, 1276-1289 (2013).
    • (2013) Proc. IEEE , vol.101 , pp. 1276-1289
    • Covic, G.1    Boys, J.T.2
  • 33
    • 84900424782 scopus 로고    scopus 로고
    • A critical review of recent progress in mid-range wireless power transfer
    • Hui, S. Y. R., Zhong, W. & Lee, C. K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500-4511 (2014).
    • (2014) IEEE Trans. Power Electron , vol.29 , pp. 4500-4511
    • Hui, S.Y.R.1    Zhong, W.2    Lee, C.K.3
  • 36
    • 78651355479 scopus 로고    scopus 로고
    • Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer
    • Sample, A. P., Meyer, D. & Smith, J. R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58, 544-554 (2011).
    • (2011) IEEE Trans. Ind. Electron , vol.58 , pp. 544-554
    • Sample, A.P.1    Meyer, D.2    Smith, J.R.3
  • 37
    • 34447309715 scopus 로고    scopus 로고
    • Wireless power transfer via strongly coupled magnetic resonances
    • Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83-86 (2007).
    • (2007) Science , vol.317 , pp. 83-86
    • Kurs, A.1
  • 39
    • 77955203592 scopus 로고    scopus 로고
    • Ultrasonic vs. Inductive power delivery for miniature biomedical implants
    • Denisov, A. & Yeatman, E. Ultrasonic vs. inductive power delivery for miniature biomedical implants. Int. Conf. Body Sensor Networks 84-89, 10.1109/BSN.2010.27 (2010).
    • (2010) Int. Conf. Body Sensor Networks , pp. 84-89
    • Denisov, A.1    Yeatman, E.2
  • 40
    • 0042263281 scopus 로고    scopus 로고
    • Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers
    • Hu, Y., Zhang, X., Yang, J. & Jiang, Q. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Control 50, 773-781 (2003).
    • (2003) IEEE Trans. Ultrason., Ferroelect., Freq. Control , vol.50 , pp. 773-781
    • Hu, Y.1    Zhang, X.2    Yang, J.3    Jiang, Q.4
  • 41
    • 84856530710 scopus 로고    scopus 로고
    • Contactless energy transfer through air by means of ultrasound. IECON 37th Annual Conf
    • Roes, M. G. L., Hendrix, M. A. M. & Duarte, J. L. Contactless energy transfer through air by means of ultrasound. IECON 37th Annual Conf. IEEE Ind. Electron. Soc. 1238-1243, 10.1109/IECON.2011.6119486 (2011).
    • (2011) IEEE Ind. Electron. Soc , pp. 1238-1243
    • Roes, M.G.L.1    Hendrix, M.A.M.2    Duarte, J.L.3
  • 42
    • 77953256208 scopus 로고    scopus 로고
    • Ultrasonic transcutaneous energy transfer using a continuous wave 650kHz Gaussian shaded transmitter
    • Ozeri, S., Shmilovitz, D., Singer, S. & Wang, C. C. Ultrasonic transcutaneous energy transfer using a continuous wave 650kHz Gaussian shaded transmitter. Ultrasonics 50, 666-674 (2010).
    • (2010) Ultrasonics , vol.50 , pp. 666-674
    • Ozeri, S.1    Shmilovitz, D.2    Singer, S.3    Wang, C.C.4
  • 43
    • 0035328116 scopus 로고    scopus 로고
    • Power and information transmission to implanted medical device using ultrasonic
    • Kawanabe, H., Katane, T., Saotome, H., Saito, O. & Kobayashi, K. Power and information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 40, 3865 (2001).
    • (2001) Jpn. J. Appl. Phys , vol.40 , pp. 3865
    • Kawanabe, H.1    Katane, T.2    Saotome, H.3    Saito, O.4    Kobayashi, K.5
  • 44
    • 0036578142 scopus 로고    scopus 로고
    • Power and interactive information transmission to implanted medical device using ultrasonic
    • Suzuki, S. N. et al. Power and interactive information transmission to implanted medical device using ultrasonic. Jpn. J. Appl. Phys. 41, 3600 (2002).
    • (2002) Jpn. J. Appl. Phys , vol.41 , pp. 3600
    • Suzuki, S.N.1
  • 46
    • 84940397554 scopus 로고    scopus 로고
    • A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion
    • Wang, T., Sawada, R. & Lee, C. A Piezoelectric Micromachined Ultrasonic Transducer Using Piston-Like Membrane Motion. IEEE Electron Device Lett. 36, 957-959 (2015).
    • (2015) IEEE Electron Device Lett , vol.36 , pp. 957-959
    • Wang, T.1    Sawada, R.2    Lee, C.3
  • 47
    • 84959513030 scopus 로고    scopus 로고
    • Zero-Bending Piezoelectric Micromachined Ultrasonic Transducer (pMUT) with Enhanced Transmitting Performance
    • Wang, T. & Lee, C. Zero-Bending Piezoelectric Micromachined Ultrasonic Transducer (pMUT) With Enhanced Transmitting Performance. J. Microelectromech. Syst. 24, 2083-2091 (2015).
    • (2015) J. Microelectromech. Syst , vol.24 , pp. 2083-2091
    • Wang, T.1    Lee, C.2
  • 48
    • 84923813726 scopus 로고    scopus 로고
    • Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth
    • Wang, T., Kobayashi, T. & Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. App. Phycs. Lett. 106, 013501 (2015).
    • (2015) App. Phycs. Lett , vol.106
    • Wang, T.1    Kobayashi, T.2    Lee, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.