메뉴 건너뛰기




Volumn 1558, Issue , 2016, Pages

Using randomized response for differential privacy preserving data collection

Author keywords

Data collection; Differential privacy; Randomized response

Indexed keywords

DATA PRIVACY; ERROR STATISTICS; LAPLACE TRANSFORMS; MEAN SQUARE ERROR; POPULATION STATISTICS; QUERY PROCESSING; SURVEYS;

EID: 84964530106     PISSN: 16130073     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (93)

References (20)
  • 1
    • 28444434728 scopus 로고    scopus 로고
    • A framework for high-accuracy privacy-preserving mining
    • S. Agrawal and J. R. Haritsa. A framework for high-accuracy privacy-preserving mining. In ICDE, pages 193-204, 2005.
    • (2005) ICDE , pp. 193-204
    • Agrawal, S.1    Haritsa, R.J.2
  • 2
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • ACM
    • B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In PODS, pages 273-282. ACM, 2007.
    • (2007) PODS , pp. 273-282
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 4
    • 84858769465 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • Citeseer
    • K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS, pages 289-296. Citeseer, 2008.
    • (2008) NIPS , pp. 289-296
    • Chaudhuri, K.1    Monteleoni, C.2
  • 5
    • 84893480068 scopus 로고    scopus 로고
    • Local privacy and statistical minimax rates
    • Oct
    • J. Duchi, M. Jordan, and M. Wainwright. Local privacy and statistical minimax rates. In FOCS, pages 429-438, Oct 2013.
    • (2013) FOCS , pp. 429-438
    • Duchi, J.1    Jordan, M.2    Wainwright, M.3
  • 7
    • 1142263341 scopus 로고    scopus 로고
    • Limiting privacy breaches in privacy preserving data mining
    • ACM
    • A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In PODS, pages 211-222. ACM, 2003.
    • (2003) PODS , pp. 211-222
    • Evfimievski, A.1    Gehrke, J.2    Srikant, R.3
  • 8
    • 77954711905 scopus 로고    scopus 로고
    • On the geometry of differential privacy
    • ACM
    • M. Hardt and K. Talwar. On the geometry of differential privacy. In STOC, pages 705-714, 2010, ACM.
    • (2010) STOC , pp. 705-714
    • Hardt, M.1    Talwar, K.2
  • 9
    • 52649154023 scopus 로고    scopus 로고
    • Optrr: Optimizing randomized response schemes for privacy-preserving data mining
    • Z. Huang and W. Du. Optrr: Optimizing randomized response schemes for privacy-preserving data mining. In ICDE, pages 705-714, 2008.
    • (2008) ICDE , pp. 705-714
    • Huang, Z.1    Du, W.2
  • 10
    • 84964472068 scopus 로고    scopus 로고
    • Extremal mechanisms for local differential privacy
    • P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local differential privacy. CoRR, 2014.
    • (2014) CoRR
    • Kairouz, P.1    Oh, S.2    Viswanath, P.3
  • 12
    • 79959983519 scopus 로고    scopus 로고
    • No free lunch in data privacy
    • D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In SIGMOD, pages 193-204, 2011.
    • (2011) SIGMOD , pp. 193-204
    • Kifer, D.1    Machanavajjhala, A.2
  • 13
    • 84866008575 scopus 로고    scopus 로고
    • Differential identifiability
    • J. Lee and C. Clifton. Differential identifiability. In KDD, pages 1041-1049, 2012.
    • (2012) KDD , pp. 1041-1049
    • Lee, J.1    Clifton, C.2
  • 14
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • ACM
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, pages 123-134, ACM.
    • PODS , pp. 123-134
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 15
    • 79960016482 scopus 로고    scopus 로고
    • Differentially private recommender systems
    • ACM
    • F. McSherry and I. Mironov. Differentially Private Recommender Systems. In KDD. ACM, 2009.
    • (2009) KDD
    • McSherry, F.1    Mironov, I.2
  • 16
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • ACM
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, pages 75-84. ACM, 2007.
    • (2007) STOC , pp. 75-84
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 17
    • 70350635777 scopus 로고    scopus 로고
    • Relationship privacy: Output perturbation for queries with joins
    • ACM
    • V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship privacy: Output perturbation for queries with joins. In PODS, pages 107-116. ACM, 2009.
    • (2009) PODS , pp. 107-116
    • Rastogi, V.1    Hay, M.2    Miklau, G.3    Suciu, D.4
  • 18
    • 1142294784 scopus 로고    scopus 로고
    • Maintaining data privacy in association rule mining
    • S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In VLDB, 2002.
    • (2002) VLDB
    • Rizvi, S.J.1    Haritsa, J.R.2
  • 19
    • 84964515310 scopus 로고    scopus 로고
    • Using randomized response for differential privacy preserving data collection
    • University of Arkansas
    • Y. Wang, X. Wu, and D. Hu. Using Randomized Response for Differential Privacy Preserving Data Collection. In Technical Report, DPL-2014-003, University of Arkansas, 2014.
    • (2014) Technical Report, DPL-2014-003
    • Wang, Y.1    Wu, X.2    Hu, D.3
  • 20
    • 77952787160 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • IEEE
    • X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236. IEEE, 2010.
    • (2010) ICDE , pp. 225-236
    • Xiao, X.1    Wang, G.2    Gehrke, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.