-
1
-
-
37849054223
-
Highway or byway: the metabolic role of the GABA shunt in plants
-
1 Fait, A., et al. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13 (2008), 14–19.
-
(2008)
Trends Plant Sci.
, vol.13
, pp. 14-19
-
-
Fait, A.1
-
2
-
-
80455173619
-
Targeted enhancement of glutamate-to- γ-aminobutyrate conversion in Arabidopsis seeds affects carbon–nitrogen balance and storage reserves in a development-dependent manner
-
2 Fait, A., et al. Targeted enhancement of glutamate-to- γ-aminobutyrate conversion in Arabidopsis seeds affects carbon–nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol. 157 (2011), 1026–1042.
-
(2011)
Plant Physiol.
, vol.157
, pp. 1026-1042
-
-
Fait, A.1
-
3
-
-
0028008446
-
Ammonium assimilation and the role of γ-aminobutyric-acid in pH homeostasis in carrot cell-suspensions
-
3 Carroll, A.D., et al. Ammonium assimilation and the role of γ-aminobutyric-acid in pH homeostasis in carrot cell-suspensions. Plant Physiol. 106 (1994), 513–520.
-
(1994)
Plant Physiol.
, vol.106
, pp. 513-520
-
-
Carroll, A.D.1
-
4
-
-
0032731314
-
Metabolism and functions of γ-aminobutyric acid
-
4 Shelp, B.J., et al. Metabolism and functions of γ-aminobutyric acid. Trends Plant Sci. 4 (1999), 446–452.
-
(1999)
Trends Plant Sci.
, vol.4
, pp. 446-452
-
-
Shelp, B.J.1
-
5
-
-
0037636431
-
Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants
-
5 Bouche, N., et al. Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 6843–6848.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 6843-6848
-
-
Bouche, N.1
-
6
-
-
1542290398
-
GABA in plants: just a metabolite?
-
6 Bouche, N., Fromm, H., GABA in plants: just a metabolite?. Trends Plant Sci. 9 (2004), 110–115.
-
(2004)
Trends Plant Sci.
, vol.9
, pp. 110-115
-
-
Bouche, N.1
Fromm, H.2
-
7
-
-
77249145907
-
The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance
-
7 Renault, H., et al. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol., 10, 2010, 20.
-
(2010)
BMC Plant Biol.
, vol.10
, pp. 20
-
-
Renault, H.1
-
8
-
-
33646577136
-
GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens
-
8 Chevrot, R., et al. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 7460–7464.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 7460-7464
-
-
Chevrot, R.1
-
9
-
-
33845679465
-
Extracellular γ-aminobutyrate mediates communication between plants and other organisms
-
9 Shelp, B.J., et al. Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol. 142 (2006), 1350–1352.
-
(2006)
Plant Physiol.
, vol.142
, pp. 1350-1352
-
-
Shelp, B.J.1
-
10
-
-
78649539956
-
Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence
-
10 Park, D.H., et al. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant J. 64 (2010), 318–330.
-
(2010)
Plant J.
, vol.64
, pp. 318-330
-
-
Park, D.H.1
-
11
-
-
0346463034
-
Gamma aminobutyrate: from intellectual curiosity to practical pest control
-
11 Shelp, B.J., et al. Gamma aminobutyrate: from intellectual curiosity to practical pest control. Can. J. Bot. 81 (2003), 1045–1048.
-
(2003)
Can. J. Bot.
, vol.81
, pp. 1045-1048
-
-
Shelp, B.J.1
-
12
-
-
0033638823
-
Gamma aminobutyric acid (GABA) and plant responses to stress
-
12 Kinnersley, A.M., Turano, F.J., Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19 (2000), 479–509.
-
(2000)
Crit. Rev. Plant Sci.
, vol.19
, pp. 479-509
-
-
Kinnersley, A.M.1
Turano, F.J.2
-
13
-
-
0038446879
-
Pollen tube growth and guidance is regulated by pop2, an Arabidopsis gene that controls GABA levels
-
13 Palanivelu, R., et al. Pollen tube growth and guidance is regulated by pop2, an Arabidopsis gene that controls GABA levels. Cell 114 (2003), 47–59.
-
(2003)
Cell
, vol.114
, pp. 47-59
-
-
Palanivelu, R.1
-
14
-
-
36248976456
-
Does GABA act as a signal in plants? Hints from molecular studies
-
14 Roberts, M.R., Does GABA act as a signal in plants? Hints from molecular studies. Plant Signal. Behav. 2 (2007), 408–409.
-
(2007)
Plant Signal. Behav.
, vol.2
, pp. 408-409
-
-
Roberts, M.R.1
-
15
-
-
0033758395
-
Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants
-
15 Kinnersley, A., Lin, F., Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul. 32 (2000), 65–76.
-
(2000)
Plant Growth Regul.
, vol.32
, pp. 65-76
-
-
Kinnersley, A.1
Lin, F.2
-
16
-
-
84935851156
-
Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?
-
16 Michaeli, S., Fromm, H., Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?. Front. Plant Sci., 6, 2015, 149.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 149
-
-
Michaeli, S.1
Fromm, H.2
-
18
-
-
84863862191
-
Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants I. Pathway structure
-
18 Shelp, B.J., et al. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants I. Pathway structure. Can. J. Bot. 90 (2012), 651–668.
-
(2012)
Can. J. Bot.
, vol.90
, pp. 651-668
-
-
Shelp, B.J.1
-
19
-
-
0033982996
-
The ‘ABC’ of GABA receptors
-
19 Bormann, J., The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21 (2000), 16–19.
-
(2000)
Trends Pharmacol. Sci.
, vol.21
, pp. 16-19
-
-
Bormann, J.1
-
20
-
-
3042546515
-
B receptors
-
B receptors. Physiol. Rev. 84 (2004), 835–867.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 835-867
-
-
Bettler, B.1
-
22
-
-
77950494200
-
Binding, activation and modulation of Cys-loop receptors
-
22 Miller, P.S., Smart, T.G., Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol. Sci. 31 (2010), 161–174.
-
(2010)
Trends Pharmacol. Sci.
, vol.31
, pp. 161-174
-
-
Miller, P.S.1
Smart, T.G.2
-
23
-
-
84924811458
-
GABAergic signalling in the immune system
-
23 Barragan, A., et al. GABAergic signalling in the immune system. Acta Physiol. 213 (2015), 819–827.
-
(2015)
Acta Physiol.
, vol.213
, pp. 819-827
-
-
Barragan, A.1
-
24
-
-
79955465487
-
2+ channels in pollen tubes and are regulated by pistil D-serine
-
2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332 (2011), 434–437.
-
(2011)
Science
, vol.332
, pp. 434-437
-
-
Michard, E.1
-
25
-
-
84882987403
-
Glutamate receptor-like genes mediate leaf-to-leaf wound signalling
-
25 Mousavi, S.A.R., et al. Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500 (2013), 422–426.
-
(2013)
Nature
, vol.500
, pp. 422-426
-
-
Mousavi, S.A.R.1
-
26
-
-
84894244803
-
Glutamate signalling in roots
-
26 Forde, B.G., Glutamate signalling in roots. J. Exp. Bot. 65 (2014), 779–787.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 779-787
-
-
Forde, B.G.1
-
27
-
-
79956085832
-
GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana
-
27 Renault, H., et al. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol. 52 (2011), 894–908.
-
(2011)
Plant Cell Physiol.
, vol.52
, pp. 894-908
-
-
Renault, H.1
-
28
-
-
33746257395
-
Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco
-
28 Yu, G.H., et al. Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem. Biol. 13 (2006), 723–731.
-
(2006)
Chem. Biol.
, vol.13
, pp. 723-731
-
-
Yu, G.H.1
-
29
-
-
84885198173
-
Plant calcium-permeable channels
-
29 Swarbreck, S.M., et al. Plant calcium-permeable channels. Plant Physiol. 163 (2013), 514–522.
-
(2013)
Plant Physiol.
, vol.163
, pp. 514-522
-
-
Swarbreck, S.M.1
-
30
-
-
84860545118
-
2+ conduction by an amino acid-gated ion channel related to glutamate receptors
-
2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol. 159 (2012), 40–46.
-
(2012)
Plant Physiol.
, vol.159
, pp. 40-46
-
-
Vincill, E.D.1
-
31
-
-
84879931621
-
A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids
-
31 Tapken, D., et al. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci. Signal., 6, 2013, ra47.
-
(2013)
Sci. Signal.
, vol.6
, pp. ra47
-
-
Tapken, D.1
-
32
-
-
84938150085
-
GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters
-
32 Ramesh, S.A., et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat. Commun., 6, 2015, 7879.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7879
-
-
Ramesh, S.A.1
-
33
-
-
78649881326
-
The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils
-
33 Ryan, P.R., et al. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 62 (2011), 9–20.
-
(2011)
J. Exp. Bot.
, vol.62
, pp. 9-20
-
-
Ryan, P.R.1
-
34
-
-
84926174262
-
Identification of the primary lesion of toxic aluminum in plant roots
-
34 Kopittke, P.M., et al. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol. 167 (2015), 1402–1411.
-
(2015)
Plant Physiol.
, vol.167
, pp. 1402-1411
-
-
Kopittke, P.M.1
-
35
-
-
84960153322
-
Signal transduction: GABA receptor found in plants
-
35 Žárský, V., Signal transduction: GABA receptor found in plants. Nat. Plants, 1, 2015, 15115.
-
(2015)
Nat. Plants
, vol.1
, pp. 15115
-
-
Žárský, V.1
-
36
-
-
84872033261
-
A receptor comprising agonist and benzodiazepine binding sites
-
A receptor comprising agonist and benzodiazepine binding sites. PLoS ONE, 8, 2013, e52323.
-
(2013)
PLoS ONE
, vol.8
, pp. e52323
-
-
Bergmann, R.1
-
37
-
-
0033564411
-
A receptor: evidence for a beta-strand
-
A receptor: evidence for a beta-strand. J. Neurosci. 19 (1999), 4847–4854.
-
(1999)
J. Neurosci.
, vol.19
, pp. 4847-4854
-
-
Boileau, A.J.1
-
38
-
-
84942933933
-
Development and regulation of chloride homeostasis in the central nervous system
-
38 Watanabe, M., Fukuda, A., Development and regulation of chloride homeostasis in the central nervous system. Front. Cell. Neurosci., 9, 2015, 14.
-
(2015)
Front. Cell. Neurosci.
, vol.9
, pp. 14
-
-
Watanabe, M.1
Fukuda, A.2
-
39
-
-
84876687775
-
Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs)
-
39 Dreyer, I., et al. Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front. Plant Sci., 3, 2012, 263.
-
(2012)
Front. Plant Sci.
, vol.3
, pp. 263
-
-
Dreyer, I.1
-
40
-
-
77956836038
-
AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells
-
40 Meyer, S., et al. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63 (2010), 1054–1062.
-
(2010)
Plant J.
, vol.63
, pp. 1054-1062
-
-
Meyer, S.1
-
41
-
-
33845628570
-
Fluctuations of γ-aminobutyrate γ-hydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light–dark cycle, leaf age, and N stress
-
41 Allan, W.L., Shelp, B.J., Fluctuations of γ-aminobutyrate γ-hydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light–dark cycle, leaf age, and N stress. Can. J. Bot. 84 (2006), 1339–1346.
-
(2006)
Can. J. Bot.
, vol.84
, pp. 1339-1346
-
-
Allan, W.L.1
Shelp, B.J.2
-
42
-
-
78649592081
-
Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis
-
42 Espinoza, C., et al. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS ONE, 2010, e14101.
-
(2010)
PLoS ONE
, pp. e14101
-
-
Espinoza, C.1
-
43
-
-
84904284603
-
2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase
-
2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J. Exp. Bot. 65 (2014), 3235–3248.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 3235-3248
-
-
Yu, G.H.1
-
44
-
-
79955375214
-
The essential role of anionic transport in plant cells: the pollen tube as a case study
-
44 Tavares, B., et al. The essential role of anionic transport in plant cells: the pollen tube as a case study. J. Exp. Bot. 62 (2011), 2273–2298.
-
(2011)
J. Exp. Bot.
, vol.62
, pp. 2273-2298
-
-
Tavares, B.1
-
45
-
-
26944493068
-
Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation
-
45 Pina, C., et al. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138 (2005), 744–756.
-
(2005)
Plant Physiol.
, vol.138
, pp. 744-756
-
-
Pina, C.1
-
46
-
-
36849063163
-
The Arabidopsis vacuolar malate channel is a member of the ALMT family
-
46 Kovermann, P., et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J. 52 (2007), 1169–1180.
-
(2007)
Plant J.
, vol.52
, pp. 1169-1180
-
-
Kovermann, P.1
-
47
-
-
84877764078
-
AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis
-
47 De Angeli, A., et al. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat. Commun., 4, 2013, 1804.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1804
-
-
De Angeli, A.1
-
48
-
-
84908193832
-
Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding
-
48 Shabala, S., et al. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ. 37 (2014), 2216–2233.
-
(2014)
Plant Cell Environ.
, vol.37
, pp. 2216-2233
-
-
Shabala, S.1
-
49
-
-
33744958732
-
Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid
-
49 Lancien, M., Roberts, M.R., Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant Cell Environ. 29 (2006), 1430–1436.
-
(2006)
Plant Cell Environ.
, vol.29
, pp. 1430-1436
-
-
Lancien, M.1
Roberts, M.R.2
-
50
-
-
0031401102
-
γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower
-
50 Kathiresan, A., et al. γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol. 115 (1997), 129–135.
-
(1997)
Plant Physiol.
, vol.115
, pp. 129-135
-
-
Kathiresan, A.1
-
51
-
-
84901419553
-
Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1
-
51 Tian, Q.Y., et al. Ethylene negatively regulates aluminium-induced malate efflux from wheat roots and tobacco cells transformed with TaALMT1. J. Exp. Bot. 65 (2014), 2415–2426.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 2415-2426
-
-
Tian, Q.Y.1
-
52
-
-
84876131299
-
γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots
-
52 Renault, H., et al. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ. 36 (2013), 1009–1018.
-
(2013)
Plant Cell Environ.
, vol.36
, pp. 1009-1018
-
-
Renault, H.1
-
53
-
-
84901951154
-
Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic
-
53 Batushansky, A., et al. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic. Mol. Plant 7 (2014), 1065–1068.
-
(2014)
Mol. Plant
, vol.7
, pp. 1065-1068
-
-
Batushansky, A.1
-
54
-
-
84877017534
-
Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves
-
54 Finkemeier, I., et al. Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves. Plant Physiol. 162 (2013), 239–253.
-
(2013)
Plant Physiol.
, vol.162
, pp. 239-253
-
-
Finkemeier, I.1
-
55
-
-
84953370091
-
Wheat roots efflux a diverse array of organic N compounds and are highly proficient at their recapture
-
Published online July 27, 2015
-
55 Warren, C., Wheat roots efflux a diverse array of organic N compounds and are highly proficient at their recapture. Plant Soil, 2015, 10.1007/s11104-015-2612-4 Published online July 27, 2015.
-
(2015)
Plant Soil
-
-
Warren, C.1
-
56
-
-
33646342506
-
AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana
-
56 Meyer, A., et al. AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. J. Biol. Chem. 281 (2006), 7197–7204.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 7197-7204
-
-
Meyer, A.1
-
57
-
-
0000050773
-
The production and efflux of 4-aminobutyrate in isolated mesophyll-cells
-
57 Chung, I.D., et al. The production and efflux of 4-aminobutyrate in isolated mesophyll-cells. Plant Physiol. 99 (1992), 659–664.
-
(1992)
Plant Physiol.
, vol.99
, pp. 659-664
-
-
Chung, I.D.1
-
58
-
-
84944261339
-
The transporter GAT1 plays an important role in GABA-mediated carbon–nitrogen interactions in Arabidopsis
-
58 Batushansky, A., et al. The transporter GAT1 plays an important role in GABA-mediated carbon–nitrogen interactions in Arabidopsis. Front. Plant Sci., 6, 2015, 785.
-
(2015)
Front. Plant Sci.
, vol.6
, pp. 785
-
-
Batushansky, A.1
-
59
-
-
0014964638
-
GABA, bicuculline and central inhibition
-
59 Curtis, D.R., et al. GABA, bicuculline and central inhibition. Nature 226 (1970), 1222–1224.
-
(1970)
Nature
, vol.226
, pp. 1222-1224
-
-
Curtis, D.R.1
-
60
-
-
0016411523
-
Amino-acids as central neurotransmitters
-
60 Defeudis, F.V., Amino-acids as central neurotransmitters. Annu. Rev. Pharmacol. Toxicol. 15 (1975), 105–130.
-
(1975)
Annu. Rev. Pharmacol. Toxicol.
, vol.15
, pp. 105-130
-
-
Defeudis, F.V.1
-
61
-
-
84901318163
-
Fast detection of extrasynaptic GABA with a whole-cell sniffer
-
61 Christensen, R.K., et al. Fast detection of extrasynaptic GABA with a whole-cell sniffer. Front. Cell. Neurosci., 8, 2014, 9.
-
(2014)
Front. Cell. Neurosci.
, vol.8
, pp. 9
-
-
Christensen, R.K.1
-
62
-
-
84863142078
-
Electrochemical sensor of 4-aminobutyric acid based on molecularly imprinted electropolymer
-
62 Zheng, X.Y., et al. Electrochemical sensor of 4-aminobutyric acid based on molecularly imprinted electropolymer. Anal. Methods 4 (2012), 482–487.
-
(2012)
Anal. Methods
, vol.4
, pp. 482-487
-
-
Zheng, X.Y.1
-
63
-
-
84856735401
-
Compartmentation of GABA metabolism raises intriguing questions
-
63 Shelp, B.J., et al. Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci. 17 (2012), 57–59.
-
(2012)
Trends Plant Sci.
, vol.17
, pp. 57-59
-
-
Shelp, B.J.1
-
64
-
-
77955274603
-
Not just a circle: flux modes in the plant TCA cycle
-
64 Sweetlove, L.J., et al. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15 (2010), 462–470.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 462-470
-
-
Sweetlove, L.J.1
|