-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
[1] Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (1972), 37–38.
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
[2] Khaselev, O., Turner, J.A., A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280 (1998), 425–427.
-
(1998)
Science
, vol.280
, pp. 425-427
-
-
Khaselev, O.1
Turner, J.A.2
-
3
-
-
84863025194
-
2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity
-
2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. J. Phys. Chem. C 116 (2012), 2772–2780.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 2772-2780
-
-
Tang, Y.X.1
Wee, P.X.2
Lai, Y.K.3
Wang, X.P.4
Gong, D.G.5
Kanhere, P.D.6
Lim, T.T.7
Dong, Z.L.8
Chen, Z.9
-
4
-
-
84889789104
-
2 via formation of {001}–{010} quasi-heterojunctions
-
2 via formation of {001}–{010} quasi-heterojunctions. J. Phys. Chem. C 117 (2013), 22894–22902.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 22894-22902
-
-
Wang, D.1
Kanhere, P.2
Li, M.3
Tay, Q.4
Tang, Y.5
Huang, Y.6
Sum, T.C.7
Mathews, N.8
Sritharan, T.9
Chen, Z.10
-
5
-
-
84949009694
-
0.7S/graphene photocathode for efficient water splitting in a photoelectrochemical tandem cell
-
0.7S/graphene photocathode for efficient water splitting in a photoelectrochemical tandem cell. ACS Sustainable Chem. Eng 3 (2015), 3123–3129.
-
(2015)
ACS Sustainable Chem. Eng
, vol.3
, pp. 3123-3129
-
-
Zhu, M.1
Zhai, C.2
Qiu, L.3
Lu, C.4
Paton, A.S.5
Du, Y.6
Goh, M.C.7
-
6
-
-
0002436730
-
2 synthesized by sol-gel procedure
-
2 synthesized by sol-gel procedure. Mater. Sci. Eng., B 47 (1997), 33–40.
-
(1997)
Mater. Sci. Eng., B
, vol.47
, pp. 33-40
-
-
Music, S.1
Gotic, M.2
Ivanda, M.3
Popovic, S.4
Turkovic, A.5
Trojko, R.6
Sekulic, A.7
Furic, K.8
-
7
-
-
44949277711
-
A structural investigation of titanium dioxide photocatalysts
-
[7] Bickley, R.I., Gonzalezcarreno, T., Lees, J.S., Palmisano, L., Tilley, R.J.D., A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem 92 (1991), 178–190.
-
(1991)
J. Solid State Chem
, vol.92
, pp. 178-190
-
-
Bickley, R.I.1
Gonzalezcarreno, T.2
Lees, J.S.3
Palmisano, L.4
Tilley, R.J.D.5
-
10
-
-
77949552018
-
Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts
-
[10] Kandiel, T.A., Feldhoff, A., Robben, L., Dillert, R., Bahnemann, D.W., Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater 22 (2010), 2050–2060.
-
(2010)
Chem. Mater
, vol.22
, pp. 2050-2060
-
-
Kandiel, T.A.1
Feldhoff, A.2
Robben, L.3
Dillert, R.4
Bahnemann, D.W.5
-
11
-
-
75149142283
-
Brookite titania photocatalytic nanomaterials: Synthesis, properties, and applications
-
[11] Xie, J.M., Lu, X.M., Liu, J., Shu, H.M., Brookite titania photocatalytic nanomaterials: Synthesis, properties, and applications. Pure Appl. Chem 81 (2009), 2407–2415.
-
(2009)
Pure Appl. Chem
, vol.81
, pp. 2407-2415
-
-
Xie, J.M.1
Lu, X.M.2
Liu, J.3
Shu, H.M.4
-
13
-
-
34247472605
-
Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties
-
[13] Li, J.G., Ishigaki, T., Sun, X.D., Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 111 (2007), 4969–4976.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 4969-4976
-
-
Li, J.G.1
Ishigaki, T.2
Sun, X.D.3
-
16
-
-
77249089794
-
2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange
-
2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. J. Phys. Chem. C 114 (2010), 2669–2676.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 2669-2676
-
-
Xu, Y.J.1
Zhuang, Y.2
Fu, X.3
-
17
-
-
22144462534
-
2 by using carbon nanotubes
-
2 by using carbon nanotubes. Appl. Catal. A-Gen 289 (2005), 186–196.
-
(2005)
Appl. Catal. A-Gen
, vol.289
, pp. 186-196
-
-
Yu, Y.1
Yu, J.C.2
Yu, J.G.3
Kwok, Y.C.4
Che, Y.K.5
Zhao, J.C.6
Ding, L.7
Ge, W.K.8
Wong, P.K.9
-
19
-
-
68749120844
-
2 nanorods
-
2 nanorods. J. Phys. Chem. C 113 (2009), 13899–13905.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 13899-13905
-
-
Long, Y.1
Lu, Y.2
Huang, Y.3
Peng, Y.4
Lu, Y.5
Kang, S.-Z.6
Mu, J.7
-
20
-
-
33749592403
-
Nanoscale characterization of the morphology and electrostatic properties of poly(3-octylthiophene)/graphite-nanoparticle blends
-
[20] Palacios-Lidón, E., Perez-García, B., Abellán, J., Miguel, C., Urbina, A., Colchero, J., Nanoscale characterization of the morphology and electrostatic properties of poly(3-octylthiophene)/graphite-nanoparticle blends. Adv. Funct. Mater 16 (2006), 1975–1984.
-
(2006)
Adv. Funct. Mater
, vol.16
, pp. 1975-1984
-
-
Palacios-Lidón, E.1
Perez-García, B.2
Abellán, J.3
Miguel, C.4
Urbina, A.5
Colchero, J.6
-
21
-
-
63849102001
-
Polymer photovoltaic cells based on solution-processable graphene and P3HT
-
[21] Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y., Wei, J., Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater 19 (2009), 894–904.
-
(2009)
Adv. Funct. Mater
, vol.19
, pp. 894-904
-
-
Liu, Q.1
Liu, Z.2
Zhang, X.3
Yang, L.4
Zhang, N.5
Pan, G.6
Yin, S.7
Chen, Y.8
Wei, J.9
-
24
-
-
84960845158
-
A stable and efficient photocatalytic hydrogen evolution system based on covalently linked silicon-phthalocyanine-graphene with surfactant
-
[24] B. Xiao, M. Zhu, X. Li, P. Yang, L. Qiu, C. Lu. A stable and efficient photocatalytic hydrogen evolution system based on covalently linked silicon-phthalocyanine-graphene with surfactant. Int. J. Hydrog. Energy http://dx.doi.org/10.1016/j.ijhydene.2015.11.166.
-
Int. J. Hydrog. Energy
-
-
Xiao, B.1
Zhu, M.2
Li, X.3
Yang, P.4
Qiu, L.5
Lu, C.6
-
28
-
-
84866696517
-
2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity
-
2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116 (2012), 19893–19901.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 19893-19901
-
-
Wang, W.S.1
Wang, D.H.2
Qu, W.G.3
Lu, L.Q.4
Xu, A.W.5
-
29
-
-
84862820719
-
2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis
-
2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50 (2012), 2472–2481.
-
(2012)
Carbon
, vol.50
, pp. 2472-2481
-
-
Kim, C.H.1
Kim, B.H.2
Yang, K.S.3
-
31
-
-
33947461960
-
Preparation of Graphitic Oxide
-
1339-1339
-
[31] Hummers, W.S., Offeman, R.E., Preparation of Graphitic Oxide. J. Am. Chem. Soc, 80, 1958 1339-1339.
-
(1958)
J. Am. Chem. Soc
, vol.80
-
-
Hummers, W.S.1
Offeman, R.E.2
-
32
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
[32] Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (2007), 1558–1565.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
33
-
-
0000680525
-
Surface properties, activity and selectivity of bifunctional powder photocatalysts
-
[33] Pichat, P., Surface properties, activity and selectivity of bifunctional powder photocatalysts. New J. Chem 11 (1987), 135–140.
-
(1987)
New J. Chem
, vol.11
, pp. 135-140
-
-
Pichat, P.1
-
34
-
-
84859567096
-
Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis
-
[34] Gong, D., Ho, W.C.J., Tang, Y., Tay, Q., Lai, Y., Highfield, J.G., Chen, Z., Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis. J. Solid State Chem 189 (2012), 117–122.
-
(2012)
J. Solid State Chem
, vol.189
, pp. 117-122
-
-
Gong, D.1
Ho, W.C.J.2
Tang, Y.3
Tay, Q.4
Lai, Y.5
Highfield, J.G.6
Chen, Z.7
-
38
-
-
0037101158
-
Substrate-interface interactions between carbon nanotubes and the supporting substrate
-
[38] Czerw, R., Foley, B., Tekleab, D., Rubio, A., Ajayan, P.M., Carroll, D.L., Substrate-interface interactions between carbon nanotubes and the supporting substrate. Phys. Rev. B, 66, 2002, 033408.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 033408
-
-
Czerw, R.1
Foley, B.2
Tekleab, D.3
Rubio, A.4
Ajayan, P.M.5
Carroll, D.L.6
-
39
-
-
0342265131
-
The absolute energy positions of conduction and valence bands of selected semiconducting minerals
-
[39] Xu, Y., Schoonen, M.A.A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral 85 (2000), 543–556.
-
(2000)
Am. Mineral
, vol.85
, pp. 543-556
-
-
Xu, Y.1
Schoonen, M.A.A.2
-
40
-
-
84860516658
-
Effects of lattice strain and band offset on electron transfer rates in type-II nanorod heterostructures
-
[40] McDaniel, H., Pelton, M., Oh, N., Shim, M., Effects of lattice strain and band offset on electron transfer rates in type-II nanorod heterostructures. Phys. Chem. Lett 3 (2012), 1094–1098.
-
(2012)
Phys. Chem. Lett
, vol.3
, pp. 1094-1098
-
-
McDaniel, H.1
Pelton, M.2
Oh, N.3
Shim, M.4
-
45
-
-
0346980355
-
Applications of functionalized transition metal complexes in photonic and optoelectronic devices
-
[45] Kalyanasundaram, K., Gratzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev 177 (1998), 347–414.
-
(1998)
Coord. Chem. Rev
, vol.177
, pp. 347-414
-
-
Kalyanasundaram, K.1
Gratzel, M.2
|