메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-8

From where do tweets originate? - A GIS approach for user location inference

Author keywords

Big data; Geography; Human mobility; Spatial clustering; Spatiotemporal clustering

Indexed keywords

ALGORITHMS; BIG DATA; DISEASE CONTROL; GEOGRAPHIC INFORMATION SYSTEMS; IMAGE RESOLUTION; LOCATION; NATURAL LANGUAGE PROCESSING SYSTEMS; SITE SELECTION; SOCIAL NETWORKING (ONLINE);

EID: 84964068355     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2755492.2755494     Document Type: Conference Paper
Times cited : (30)

References (21)
  • 2
    • 79959545846 scopus 로고    scopus 로고
    • Harnessing the crowdsourcing power of social media for disaster relief
    • Gao, H., Barbier, G., and Goolsby, R., 2011. Harnessing the Crowdsourcing Power of Social Media for Disaster Relief. IEEE Intelligent Systems. 26, 3, 10-14. doi:10.1109/MIS.2011.52.
    • (2011) IEEE Intelligent Systems , vol.26 , Issue.3 , pp. 10-14
    • Gao, H.1    Barbier, G.2    Goolsby, R.3
  • 3
    • 79953294684 scopus 로고    scopus 로고
    • Hope for Haiti: An analysis of Facebook and Twitter usage during the earthquake relief efforts
    • Muralidharan, S., Rasmussen, L., Patterson, D., and Shin, J. H. 2011. Hope for Haiti: An analysis of Facebook and Twitter usage during the earthquake relief efforts. Public Relations Review. 37, 2, 175-177.
    • (2011) Public Relations Review , vol.37 , Issue.2 , pp. 175-177
    • Muralidharan, S.1    Rasmussen, L.2    Patterson, D.3    Shin, J.H.4
  • 4
    • 84882940905 scopus 로고    scopus 로고
    • Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): A case study in 2012 US presidential election
    • Tsou, M. H., Yang, J. A., Lusher, D., Han, S., Spitzberg, B., Gawron, J. M., Dipak, G., and Li, A. 2013. Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US Presidential Election. Cartography and Geographic Information Science. 40, 4, 337-348.
    • (2013) Cartography and Geographic Information Science , vol.40 , Issue.4 , pp. 337-348
    • Tsou, M.H.1    Yang, J.A.2    Lusher, D.3    Han, S.4    Spitzberg, B.5    Gawron, J.M.6    Dipak, G.7    Li, A.8
  • 6
    • 84874044333 scopus 로고    scopus 로고
    • Mining user mobility features for next place prediction in location-based services
    • Noulas, A., Scellato, S., Lathia, N., and Mascolo, C. 2012. Mining User Mobility Features for Next Place Prediction in Location-Based Services. In ICDM. 1038-1043.
    • (2012) ICDM , pp. 1038-1043
    • Noulas, A.1    Scellato, S.2    Lathia, N.3    Mascolo, C.4
  • 7
    • 84925934640 scopus 로고    scopus 로고
    • A data-driven framework for archiving and exploring social media data
    • Huang, Q., Xu, C. 2014. A Data-Driven Framework for Archiving and Exploring Social Media Data. Annual of GIS. doi: 10.1080/19475683.2014.942697. http://dx.doi.org/10.1080/19475683.2014.942697.
    • (2014) Annual of GIS
    • Huang, Q.1    Xu, C.2
  • 11
    • 84890598725 scopus 로고    scopus 로고
    • Where is this tweet from? Inferring home locations of twitter users
    • Mahmud, J., Nichols, J., and Drews, C. 2012. Where Is This Tweet From? Inferring Home Locations of Twitter Users. In ICWSM.
    • (2012) ICWSM
    • Mahmud, J.1    Nichols, J.2    Drews, C.3
  • 13
    • 84896914698 scopus 로고    scopus 로고
    • Text-based twitter user geolocation prediction
    • Han, B., Cook, P., and Baldwin, T. 2014. Text-based twitter user geolocation prediction. J. Artif. Int. Res. 49, 1, 451-500.
    • (2014) J. Artif. Int. Res. , vol.49 , Issue.1 , pp. 451-500
    • Han, B.1    Cook, P.2    Baldwin, T.3
  • 14
    • 84964072408 scopus 로고    scopus 로고
    • Google Places API. 2014. https://developers.google.com/places/documentation/.
    • (2014)
    • Google Places API1
  • 15
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • August
    • Ester, M., Kriegel, H. P., Sander, J., and Xu, X. 1996. August). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD. 96, 226-231.
    • (1996) KDD , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 16
    • 84964044652 scopus 로고    scopus 로고
    • Google supported places. 2014. https://developers.google.com/places/documentation/support ed-types.
    • (2014)
    • Google supported places1
  • 17
    • 0002461597 scopus 로고
    • A land use and land cover classification system for use with remote sensor data
    • Anderson, J. R. 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office. 964.
    • (1976) US Government Printing Office , pp. 964
    • Anderson, J.R.1
  • 20
    • 84876310106 scopus 로고    scopus 로고
    • Using adaptively coupled models and high-performance computing for enabling the computability of dust storm forecasting
    • Huang, Q., Yang, C., Benedict, K., Rezgui, A., Xie, J., Xia, J., and Chen, S. 2013. Using Adaptively Coupled Models and High-performance Computing for Enabling the Computability of Dust Storm Forecasting. International Journal of Geographical Information Science. 27, 4, 765-784. doi:10.1080/13658816.2012.715650.
    • (2013) International Journal of Geographical Information Science , vol.27 , Issue.4 , pp. 765-784
    • Huang, Q.1    Yang, C.2    Benedict, K.3    Rezgui, A.4    Xie, J.5    Xia, J.6    Chen, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.