메뉴 건너뛰기




Volumn 82, Issue 3, 2016, Pages 213-222

A feature selection approach for segmentation of very high-resolution satellite images

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; SATELLITE IMAGERY; SATELLITES;

EID: 84963998038     PISSN: 00991112     EISSN: None     Source Type: Journal    
DOI: 10.14358/PERS.82.3.213     Document Type: Article
Times cited : (6)

References (45)
  • 1
    • 45849122519 scopus 로고    scopus 로고
    • Automatic detection of geospatial objects using multiple hierarchical segmentations
    • Akçay, H.G., and S. Aksoy, 2008. Automatic detection of geospatial objects using multiple hierarchical segmentations, IEEE Transactions on Geoscience and Remote Sensing, 46(7): 2097-2111.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.7 , pp. 2097-2111
    • Akçay, H.G.1    Aksoy, S.2
  • 2
    • 0001812168 scopus 로고    scopus 로고
    • Multi-resolution segmentation: An optimization approach for high quality Multiscale image segmentation
    • J. Strobl, editor), Wichmann, Heidelberg
    • Baatz, M., and A. Schape, 2000. Multi-resolution segmentation: an optimization approach for high quality Multiscale image segmentation, Angewandte Geographische Informationsverarbeitung XII (J. Strobl, editor), Wichmann, Heidelberg, pp. 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung XII , pp. 12-23
    • Baatz, M.1    Schape, A.2
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural Networks, 5(4): 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 5
    • 0002215069 scopus 로고
    • On a measure of divergence between two statistical populations defined by their probability distributions
    • Bhattacharyya, A., 1943. On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society, 35(1): 99-109.
    • (1943) Bulletin of the Calcutta Mathematical Society , vol.35 , Issue.1 , pp. 99-109
    • Bhattacharyya, A.1
  • 6
    • 84886882939 scopus 로고    scopus 로고
    • A local-spectral fuzzy segmentation for MSG multispectral images
    • Bitam, A., and S. Ameur, 2013. A local-spectral fuzzy segmentation for MSG multispectral images, International Journal of Remote Sensing, 34(23): 8360-8372.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.23 , pp. 8360-8372
    • Bitam, A.1    Ameur, S.2
  • 7
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown, G., A. Pocock, M. Lujan, and M.J. Zhao, 2012. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection, Journal of Machine Learning Research, 13(1): 27-66.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Lujan, M.3    Zhao, M.J.4
  • 11
    • 21244464429 scopus 로고    scopus 로고
    • Design-based texture feature fusion using Gabor filters and co-occurrence probabilities
    • Clausi, D.A., and H. Deng, 2005.Design-based texture feature fusion using Gabor filters and co-occurrence probabilities, IEEE Transactions on Image Processing, 14(7): 925-936.
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.7 , pp. 925-936
    • Clausi, D.A.1    Deng, H.2
  • 12
    • 78650080925 scopus 로고    scopus 로고
    • Remote sensing: An overview
    • Congalton, R.G., 2010, Remote sensing: An overview, GIScience & Remote Sensing, 47(4): 443-459.
    • (2010) GIScience & Remote Sensing , vol.47 , Issue.4 , pp. 443-459
    • Congalton, R.G.1
  • 14
    • 84964060343 scopus 로고    scopus 로고
    • Digital Globe, last date accessed: 06 January
    • Digital Globe, URL: http://www.digitalglobe.com/resources/satelliteinformation (last date accessed: 06 January 2016).
    • (2016)
  • 15
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret, F., 2004. Fast binary feature selection with conditional mutual information, Journal of Machine Learning Research, 5(4941): 1531-1555.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.4941 , pp. 1531-1555
    • Fleuret, F.1
  • 16
    • 79960048515 scopus 로고    scopus 로고
    • Optimal region growing segmentation and its effect on classification accuracy
    • Gao, Y.,J.F. Mas, N. Kerle, and A.N. Pacheco, 2011. Optimal region growing segmentation and its effect on classification accuracy, International Journal of Remote Sensing, 32(13): 3747-3763.
    • (2011) International Journal of Remote Sensing , vol.32 , Issue.13 , pp. 3747-3763
    • Gao, Y.1    Mas, J.F.2    Kerle, N.3    Pacheco, A.N.4
  • 21
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • AAAI Press
    • Kira, K., and L. Rendell., 1992. The feature selection problem: Traditional methods and a new algorithm, Proceedings of AAAI-92, AAAI Press, pp. 129-134.
    • (1992) Proceedings of AAAI-92 , pp. 129-134
    • Kira, K.1    Rendell, L.2
  • 22
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • Association for Computational Linguistics, Morristown, New Jersey
    • Lewis, D.D., 1992. Feature selection and feature extraction for text categorization, Proceedings of the Workshop on Speech and Natural Language, Association for Computational Linguistics, Morristown, New Jersey, pp. 212-217.
    • (1992) Proceedings of the Workshop on Speech and Natural Language , pp. 212-217
    • Lewis, D.D.1
  • 23
    • 34948823930 scopus 로고    scopus 로고
    • Conditional infomax learning: An integrated framework for feature extraction and fusion
    • Lin, D., and X. Tang, 2006. Conditional infomax learning: An integrated framework for feature extraction and fusion, Proceedings of ECCV, 1(2006): 68-82.
    • (2006) Proceedings of ECCV , vol.1 , Issue.2006 , pp. 68-82
    • Lin, D.1    Tang, X.2
  • 24
    • 77649155792 scopus 로고    scopus 로고
    • Fuzzy image segmentation for urban land-cover classification
    • Lizarazo, I., and J. Barros, 2010. Fuzzy image segmentation for urban land-cover classification, Photogrammetric Engineering & Remote Sensing, 76(2): 151-162.
    • (2010) Photogrammetric Engineering & Remote Sensing , vol.76 , Issue.2 , pp. 151-162
    • Lizarazo, I.1    Barros, J.2
  • 28
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Mitra, P., B.U. Shankar, and S.K. Pal, 2004. Segmentation of multispectral remote sensing images using active support vector machines, Pattern Recognition Letters, 25(2004): 1067-1074.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.2004 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 30
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., F. Long, and C. Ding, 2005. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8): 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 32
    • 65249095209 scopus 로고    scopus 로고
    • An optimal unsupervised satellite image segmentation approach based on Pearson system and k-means clustering algorithm initialization
    • Rekik, A., M. Zribi, A. Hamida, and M. Benjelloun, 2009. An optimal unsupervised satellite image segmentation approach based on Pearson system and k-means clustering algorithm initialization, International Journal of Signal Processing, 5(8): 38-45.
    • (2009) International Journal of Signal Processing , vol.5 , Issue.8 , pp. 38-45
    • Rekik, A.1    Zribi, M.2    Hamida, A.3    Benjelloun, M.4
  • 34
    • 54849426745 scopus 로고    scopus 로고
    • Wavelet oscillator neural networks for texture segmentation
    • Sengur, A., I. Turkoglu, and M. Cevdetince, 2008. Wavelet oscillator neural networks for texture segmentation, Neural Network World, 4(8): 275-289.
    • (2008) Neural Network World , vol.4 , Issue.8 , pp. 275-289
    • Sengur, A.1    Turkoglu, I.2    Cevdetince, M.3
  • 35
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E., 1948. A mathematical theory of communication, Bell Systems Technical Journal, 27(3): 379-423.
    • (1948) Bell Systems Technical Journal , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 36
    • 0031631377 scopus 로고    scopus 로고
    • Image Segmentation by region growing and spectral clustering with a natural convergence criterion
    • Seattle, Washington, 06-10 July
    • Tilton, J.C., 1998. Image Segmentation by region growing and spectral clustering with a natural convergence criterion, Proceedings of IGARSS '98, Seattle, Washington, 06-10 July, 4(1998): 1766-1768.
    • (1998) Proceedings of IGARSS '98 , vol.4 , Issue.1998 , pp. 1766-1768
    • Tilton, J.C.1
  • 37
  • 41
    • 84883828442 scopus 로고    scopus 로고
    • Selecting key features for remote sensing classification by using decisiontheoretic rough set model
    • Xie, F., D. Chen, J. Meligrana, Y. Lin, and W. Ren, 2013. Selecting key features for remote sensing classification by using decisiontheoretic rough set model, Photogrammetric Engineering & Remote Sensing, 79(9): 787-797.
    • (2013) Photogrammetric Engineering & Remote Sensing , vol.79 , Issue.9 , pp. 787-797
    • Xie, F.1    Chen, D.2    Meligrana, J.3    Lin, Y.4    Ren, W.5
  • 42
    • 84898987386 scopus 로고    scopus 로고
    • Data visualization and feature selection: New algorithms for non-Gaussian data
    • Yang, H., and J. Moody, 1999. Data visualization and feature selection: New algorithms for non-Gaussian data, Advances in Neural Information Processing Systems, 12(1999): 687-693.
    • (1999) Advances in Neural Information Processing Systems , vol.12 , Issue.1999 , pp. 687-693
    • Yang, H.1    Moody, J.2
  • 43
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., and H. Liu, 2004. Efficient feature selection via analysis of relevance and redundancy, Journal of Machine Learning Research, 5(2004): 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.2004 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 44


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.