-
1
-
-
84896690513
-
Prevalence of childhood and adult obesity in the United States, 2011-2012
-
Ogden C.L., Carroll M.D., Kit B.K., Flegal K.M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014, 311:806-814.
-
(2014)
JAMA
, vol.311
, pp. 806-814
-
-
Ogden, C.L.1
Carroll, M.D.2
Kit, B.K.3
Flegal, K.M.4
-
2
-
-
84968888004
-
-
NIDDK, . http://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx.
-
-
-
-
3
-
-
84968726817
-
-
Eurostat, . http://ec.europa.eu/eurostat/en/web/products-press-releases/-/3-24112011-BP.
-
-
-
-
4
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
5
-
-
84952915479
-
Sestrin2 is a leucine sensor for the mTORC1 pathway
-
Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016, 351:43-48.
-
(2016)
Science
, vol.351
, pp. 43-48
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
-
6
-
-
84959880781
-
The CASTOR proteins are arginine sensors for the mTORC1 pathway
-
Chantranupong L., Scaria S.M., Saxton R.A., Gygi M.P., Shen K., Wyant G.A., et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016.
-
(2016)
Cell
-
-
Chantranupong, L.1
Scaria, S.M.2
Saxton, R.A.3
Gygi, M.P.4
Shen, K.5
Wyant, G.A.6
-
7
-
-
79952155359
-
Transcriptional control of adipose lipid handling by IRF4
-
Eguchi J., Wang X., Yu S., Kershaw E.E., Chiu P.C., Dushay J., et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metabolism 2011, 13:249-259.
-
(2011)
Cell Metabolism
, vol.13
, pp. 249-259
-
-
Eguchi, J.1
Wang, X.2
Yu, S.3
Kershaw, E.E.4
Chiu, P.C.5
Dushay, J.6
-
8
-
-
84874399589
-
Lessons on conditional gene targeting in mouse adipose tissue
-
Lee K.Y., Russell S.J., Ussar S., Boucher J., Vernochet C., Mori M.A., et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013, 62:864-874.
-
(2013)
Diabetes
, vol.62
, pp. 864-874
-
-
Lee, K.Y.1
Russell, S.J.2
Ussar, S.3
Boucher, J.4
Vernochet, C.5
Mori, M.A.6
-
9
-
-
84887474124
-
Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma
-
Wang F., Mullican S.E., DiSpirito J.R., Peed L.C., Lazar M.A. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proceedings of the National Academy of Sciences U S A 2013, 110:18656-18661.
-
(2013)
Proceedings of the National Academy of Sciences U S A
, vol.110
, pp. 18656-18661
-
-
Wang, F.1
Mullican, S.E.2
DiSpirito, J.R.3
Peed, L.C.4
Lazar, M.A.5
-
10
-
-
84871750212
-
A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods
-
Mullican S.E., Tomaru T., Gaddis C.A., Peed L.C., Sundaram A., Lazar M.A. A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Molecular Endocrinology 2013, 27:127-134.
-
(2013)
Molecular Endocrinology
, vol.27
, pp. 127-134
-
-
Mullican, S.E.1
Tomaru, T.2
Gaddis, C.A.3
Peed, L.C.4
Sundaram, A.5
Lazar, M.A.6
-
11
-
-
84921634958
-
Characterization of Cre recombinase models for the study of adipose tissue
-
Jeffery E., Berry R., Church C.D., Yu S., Shook B.A., Horsley V., et al. Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte 2014, 3:206-211.
-
(2014)
Adipocyte
, vol.3
, pp. 206-211
-
-
Jeffery, E.1
Berry, R.2
Church, C.D.3
Yu, S.4
Shook, B.A.5
Horsley, V.6
-
12
-
-
54849431380
-
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
-
Polak P., Cybulski N., Feige J.N., Auwerx J., Ruegg M.A., Hall M.N. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metabolism 2008, 8:399-410.
-
(2008)
Cell Metabolism
, vol.8
, pp. 399-410
-
-
Polak, P.1
Cybulski, N.2
Feige, J.N.3
Auwerx, J.4
Ruegg, M.A.5
Hall, M.N.6
-
13
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011, 146:408-420.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
Balderas, E.6
-
14
-
-
33845977987
-
Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat
-
Xue B., Rim J.S., Hogan J.C., Coulter A.A., Koza R.A., Kozak L.P. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. Journal of Lipid Research 2007, 48:41-51.
-
(2007)
Journal of Lipid Research
, vol.48
, pp. 41-51
-
-
Xue, B.1
Rim, J.S.2
Hogan, J.C.3
Coulter, A.A.4
Koza, R.A.5
Kozak, L.P.6
-
15
-
-
84865792944
-
PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors
-
Sanchez-Gurmaches J., Hung C.M., Sparks C.A., Tang Y., Li H., Guertin D.A. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metabolism 2012, 16:348-362.
-
(2012)
Cell Metabolism
, vol.16
, pp. 348-362
-
-
Sanchez-Gurmaches, J.1
Hung, C.M.2
Sparks, C.A.3
Tang, Y.4
Li, H.5
Guertin, D.A.6
-
17
-
-
77951166692
-
Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
-
Chakrabarti P., English T., Shi J., Smas C.M., Kandror K.V. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 2010, 59:775-781.
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
Smas, C.M.4
Kandror, K.V.5
-
18
-
-
78651067054
-
MTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
-
Soliman G.A., Acosta-Jaquez H.A., Fingar D.C. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 2010, 45:1089-1100.
-
(2010)
Lipids
, vol.45
, pp. 1089-1100
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Fingar, D.C.3
-
19
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman M.A., Peroni O.D., Villoria J., Schon M.R., Abumrad N.A., Bluher M., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012, 484:333-338.
-
(2012)
Nature
, vol.484
, pp. 333-338
-
-
Herman, M.A.1
Peroni, O.D.2
Villoria, J.3
Schon, M.R.4
Abumrad, N.A.5
Bluher, M.6
-
20
-
-
84890812887
-
Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes
-
Ro S.H., Jung C.H., Hahn W.S., Xu X., Kim Y.M., Yun Y.S., et al. Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 2013, 9:2103-2114.
-
(2013)
Autophagy
, vol.9
, pp. 2103-2114
-
-
Ro, S.H.1
Jung, C.H.2
Hahn, W.S.3
Xu, X.4
Kim, Y.M.5
Yun, Y.S.6
-
21
-
-
84940592833
-
Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation
-
Wang Q.A., Tao C., Jiang L., Shao M., Ye R., Zhu Y., et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology 2015, 17:1099-1111.
-
(2015)
Nature Cell Biology
, vol.17
, pp. 1099-1111
-
-
Wang, Q.A.1
Tao, C.2
Jiang, L.3
Shao, M.4
Ye, R.5
Zhu, Y.6
-
22
-
-
7044234994
-
CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue
-
Park S.K., Oh S.Y., Lee M.Y., Yoon S., Kim K.S., Kim J.W. CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes 2004, 53:2757-2766.
-
(2004)
Diabetes
, vol.53
, pp. 2757-2766
-
-
Park, S.K.1
Oh, S.Y.2
Lee, M.Y.3
Yoon, S.4
Kim, K.S.5
Kim, J.W.6
-
23
-
-
20044372908
-
C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer
-
Qiao L., Maclean P.S., Schaack J., Orlicky D.J., Darimont C., Pagliassotti M., et al. C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes 2005, 54:1744-1754.
-
(2005)
Diabetes
, vol.54
, pp. 1744-1754
-
-
Qiao, L.1
Maclean, P.S.2
Schaack, J.3
Orlicky, D.J.4
Darimont, C.5
Pagliassotti, M.6
-
24
-
-
30944450833
-
Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid
-
Qiao L., Schaack J., Shao J. Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid. Endocrinology 2006, 147:865-874.
-
(2006)
Endocrinology
, vol.147
, pp. 865-874
-
-
Qiao, L.1
Schaack, J.2
Shao, J.3
-
25
-
-
84939569115
-
Congenital generalized lipodystrophies-new insights into metabolic dysfunction
-
Patni N., Garg A. Congenital generalized lipodystrophies-new insights into metabolic dysfunction. Nature Reviews Endocrinology 2015, 11:522-534.
-
(2015)
Nature Reviews Endocrinology
, vol.11
, pp. 522-534
-
-
Patni, N.1
Garg, A.2
-
26
-
-
84946558071
-
Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals
-
Zhou H., Lei X., Benson T., Mintz J., Xu X., Harris R.B., et al. Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals. Journal of Lipid Research 2015, 56:1912-1925.
-
(2015)
Journal of Lipid Research
, vol.56
, pp. 1912-1925
-
-
Zhou, H.1
Lei, X.2
Benson, T.3
Mintz, J.4
Xu, X.5
Harris, R.B.6
-
27
-
-
58749091644
-
Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy
-
Cortes V.A., Curtis D.E., Sukumaran S., Shao X., Parameswara V., Rashid S., et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metabolism 2009, 9:165-176.
-
(2009)
Cell Metabolism
, vol.9
, pp. 165-176
-
-
Cortes, V.A.1
Curtis, D.E.2
Sukumaran, S.3
Shao, X.4
Parameswara, V.5
Rashid, S.6
-
28
-
-
84900468420
-
Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy
-
Liu L., Jiang Q., Wang X., Zhang Y., Lin R.C., Lam S.M., et al. Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy. Diabetes 2014, 63:2320-2331.
-
(2014)
Diabetes
, vol.63
, pp. 2320-2331
-
-
Liu, L.1
Jiang, Q.2
Wang, X.3
Zhang, Y.4
Lin, R.C.5
Lam, S.M.6
-
29
-
-
84924061517
-
Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis
-
Talukder M.M., Sim M.F., O'Rahilly S., Edwardson J.M., Rochford J.J. Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Molecular Metabolism 2015, 4:199-209.
-
(2015)
Molecular Metabolism
, vol.4
, pp. 199-209
-
-
Talukder, M.M.1
Sim, M.F.2
O'Rahilly, S.3
Edwardson, J.M.4
Rochford, J.J.5
-
31
-
-
0035163850
-
Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin
-
Peterfy M., Phan J., Xu P., Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nature Genetics 2001, 27:121-124.
-
(2001)
Nature Genetics
, vol.27
, pp. 121-124
-
-
Peterfy, M.1
Phan, J.2
Xu, P.3
Reue, K.4
-
32
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
-
33
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villen J., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011, 332:1322-1326.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villen, J.6
-
34
-
-
84962141694
-
Rapamycin blocks induction of the thermogenic program in white adipose tissue
-
Tran C.M., Mukherjee S., Ye L., Frederick D.W., Kissig M., Davis J.G., et al. Rapamycin blocks induction of the thermogenic program in white adipose tissue. Diabetes 2016.
-
(2016)
Diabetes
-
-
Tran, C.M.1
Mukherjee, S.2
Ye, L.3
Frederick, D.W.4
Kissig, M.5
Davis, J.G.6
-
35
-
-
84968931420
-
Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning
-
Liu D., Bordicchia M., Zhang C., Fang H., Wei W., Li J.L., et al. Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning. Journal of Clinical Investigation 2016.
-
(2016)
Journal of Clinical Investigation
-
-
Liu, D.1
Bordicchia, M.2
Zhang, C.3
Fang, H.4
Wei, W.5
Li, J.L.6
-
36
-
-
84921912380
-
Tuberous sclerosis complex 1-mechanistic target of rapamycin complex 1 signaling determines brown-to-white adipocyte phenotypic switch
-
Xiang X., Lan H., Tang H., Yuan F., Xu Y., Zhao J., et al. Tuberous sclerosis complex 1-mechanistic target of rapamycin complex 1 signaling determines brown-to-white adipocyte phenotypic switch. Diabetes 2015, 64:519-528.
-
(2015)
Diabetes
, vol.64
, pp. 519-528
-
-
Xiang, X.1
Lan, H.2
Tang, H.3
Yuan, F.4
Xu, Y.5
Zhao, J.6
|