메뉴 건너뛰기




Volumn , Issue , 2001, Pages 84-91

An empirical study on the visual cluster validation method with Fastmap

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA HANDLING; DATA MINING; DATABASE SYSTEMS;

EID: 84963830496     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DASFAA.2001.916368     Document Type: Conference Paper
Times cited : (20)

References (24)
  • 3
    • 0023523514 scopus 로고
    • How many clusters are best? - An experiment
    • Dubes, R. C. (1987) How many clusters are best? - an experiment. Pattern Recognition, Vol. 20, No. 6, pp.645-663.
    • (1987) Pattern Recognition , vol.20 , Issue.6 , pp. 645-663
    • Dubes, R.C.1
  • 4
    • 0018655613 scopus 로고
    • Validity studies in clustering methodologies
    • Dubes, R. and Jain, A. K. (1979) Validity studies in clustering methodologies. Pattern Recognition, Vol. 11, pp. 235-254.
    • (1979) Pattern Recognition , vol.11 , pp. 235-254
    • Dubes, R.1    Jain, A.K.2
  • 6
    • 0003578015 scopus 로고
    • Heinemann Educational Books Ltd
    • Everitt, B. (1974) Cluster Analysis. Heinemann Educational Books Ltd.
    • (1974) Cluster Analysis
    • Everitt, B.1
  • 7
    • 84976803260 scopus 로고
    • Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
    • Faloutsos, C. and Lin, K., (1995) Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In Proceedings of ACM-SIGMOD, pp. 163-174.
    • (1995) Proceedings of ACM-SIGMOD , pp. 163-174
    • Faloutsos, C.1    Lin, K.2
  • 10
    • 0041490380 scopus 로고    scopus 로고
    • Cluster validation
    • ed. C Hayashi, N Ohsumi, K Yajima, Y Tanaka, H-H Bock and Y Baba, Springer, Tokyo
    • Gordon, A. D. (1998) Cluster validation, In Data Science, Classification, and Related Methods, ed. C Hayashi, N Ohsumi, K Yajima, Y Tanaka, H-H Bock and Y Baba, Springer, Tokyo, pp 22-39.
    • (1998) Data Science, Classification, and Related Methods , pp. 22-39
    • Gordon, A.D.1
  • 11
  • 12
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z. (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, Vol. 2, No. 3, pp. 283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 13
    • 77955225693 scopus 로고    scopus 로고
    • A visual method of cluster validation with Fastmap
    • Huang, Z. and Lin, T. (2000) A visual method of cluster validation with Fastmap. In Proceedings of PAKDD-2000, pp. 153-164.
    • (2000) Proceedings of PAKDD-2000 , pp. 153-164
    • Huang, Z.1    Lin, T.2
  • 15
    • 0000742860 scopus 로고
    • Geometrical models and badness-of-fit functions
    • ed. P. R. Krishnaiah, Academic Press
    • Kruskal, J. B. and Carroll, J. D. (1969) Geometrical models and badness-of-fit functions, in Multivariate Analysis II, ed. P. R. Krishnaiah, Academic Press, pp.639-670.
    • (1969) Multivariate Analysis II , pp. 639-670
    • Kruskal, J.B.1    Carroll, J.D.2
  • 16
    • 0002271592 scopus 로고    scopus 로고
    • Clustering validation: Results and implications for applied analysis
    • ed. P. Arabie, L. J. Hubert and G. De Soete, World Scientific
    • Milligan, G. W. (1996) Clustering validation: results and implications for applied analysis. in Clustering and Classification, ed. P. Arabie, L. J. Hubert and G. De Soete, World Scientific, pp.341-375.
    • (1996) Clustering and Classification , pp. 341-375
    • Milligan, G.W.1
  • 17
    • 0000228352 scopus 로고
    • A Monte Carlo study of thirty internal criterion measures for cluster analysis
    • Milligan, G. W. (1981) A Monte Carlo study of thirty internal criterion measures for cluster analysis. Psychometrika, Vol. 46, No. 2, pp.187-199.
    • (1981) Psychometrika , vol.46 , Issue.2 , pp. 187-199
    • Milligan, G.W.1
  • 18
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W. and Cooper, M. C. (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika, Vol. 50, No. 2, pp.159-179.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 19
    • 0018910525 scopus 로고
    • The validation of four ultrametric clustering algorithms
    • Milligan, G. W. and Isaac, P. D. (1980) The validation of four ultrametric clustering algorithms. Pattern Recognition, Vol. 12, pp.41-50.
    • (1980) Pattern Recognition , vol.12 , pp. 41-50
    • Milligan, G.W.1    Isaac, P.D.2
  • 20
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • 1994
    • Ng, R. and Han, J. (1994) Efficient and effective clustering methods for spatial data mining. In Proceedings of VLDB, 1994.
    • (1994) Proceedings of VLDB
    • Ng, R.1    Han, J.2
  • 21
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J. (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, Vol. 20, pp.53-65.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 24
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A new data clustering algorithm and its applications
    • Zhang, T. and Ramakrishnan, R. (1997) BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, Vol. 1, No. 2, pp. 141-182.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.