메뉴 건너뛰기




Volumn 72, Issue 4, 2016, Pages 1494-1516

Handling big data: research challenges and future directions

Author keywords

Big data; Data analytics; Data cleansing; Data curation; Privacy; Trust

Indexed keywords

DATA HANDLING; DATA PRIVACY;

EID: 84962978213     PISSN: 09208542     EISSN: 15730484     Source Type: Journal    
DOI: 10.1007/s11227-016-1677-z     Document Type: Article
Times cited : (122)

References (71)
  • 1
    • 69149090568 scopus 로고    scopus 로고
    • The pathologies of big data
    • Jacobs A (2009) The pathologies of big data. Commun ACM 52(8):36–44
    • (2009) Commun ACM , vol.52 , Issue.8 , pp. 36-44
    • Jacobs, A.1
  • 2
    • 84860443491 scopus 로고    scopus 로고
    • From databases to big data
    • Madden S (2012) From databases to big data. IEEE Internet Comput 16(3):4–6
    • (2012) IEEE Internet Comput , vol.16 , Issue.3 , pp. 4-6
    • Madden, S.1
  • 4
    • 84864133585 scopus 로고    scopus 로고
    • Extracting value from chaos
    • Gantz J, Reinsel D (2011) Extracting value from chaos. IDC iView, pp 1–12
    • (2011) IDC iView , pp. 1-12
    • Gantz, J.1    Reinsel, D.2
  • 5
    • 84890453428 scopus 로고    scopus 로고
    • Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges
    • Banaee H, Ahmed MU, Loutfi A (2013) Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13(12):17472–17500
    • (2013) Sensors , vol.13 , Issue.12 , pp. 17472-17500
    • Banaee, H.1    Ahmed, M.U.2    Loutfi, A.3
  • 6
    • 84907325157 scopus 로고    scopus 로고
    • The rise of ‘big data’ on cloud computing: review and open research issues
    • Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of ‘big data’ on cloud computing: review and open research issues. Inf Syst 47:98–115
    • (2015) Inf Syst , vol.47 , pp. 98-115
    • Hashem, I.A.T.1    Yaqoob, I.2    Anuar, N.B.3    Mokhtar, S.4    Gani, A.5    Khan, S.U.6
  • 7
    • 84899458050 scopus 로고    scopus 로고
    • Data quality management, data usage experience and acquisition intention of big data analytics
    • Kwon O, Lee N, Shin B (2014) Data quality management, data usage experience and acquisition intention of big data analytics. Int J Inf Manag 34(3):387–394
    • (2014) Int J Inf Manag , vol.34 , Issue.3 , pp. 387-394
    • Kwon, O.1    Lee, N.2    Shin, B.3
  • 8
    • 81055138684 scopus 로고    scopus 로고
    • Big data: the next frontier for innovation, competition, and productivity
    • Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2016) Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute, 2011. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation. Accessed 12 January 2016
    • (2016) McKinsey Global Institute , pp. 2011
    • Manyika, J.1    Chui, M.2    Brown, B.3    Bughin, J.4    Dobbs, R.5    Roxburgh, C.6    Byers, A.H.7
  • 9
    • 84957057328 scopus 로고    scopus 로고
    • Better health care through data: how health analytics could contain costs and improve care
    • The IEEE Institute, New York
    • Pretz K (2016) Better health care through data: how health analytics could contain costs and improve care. The IEEE Institute, New York. http://theinstitute.ieee.org/technology-focus/technology-topic/better-health-care-through-data. Accessed 12 January 2016
    • (2016)
    • Pretz, K.1
  • 11
    • 84883788980 scopus 로고    scopus 로고
    • Big data. Hadoop and cloud computing in genomics
    • O’Driscoll A, Daugelaite J, Sleator RD (2013) Big data. Hadoop and cloud computing in genomics. J Biomed Inf 46(5):774–781
    • (2013) J Biomed Inf , vol.46 , Issue.5 , pp. 774-781
    • O’Driscoll, A.1    Daugelaite, J.2    Sleator, R.D.3
  • 12
    • 84991953805 scopus 로고    scopus 로고
    • Big Data Insight Group. Accessed 12 January 2016
    • Big Data Insight Group. http://www.thebigdatainsightgroup.com/site/article/nypd-make-big-apple-safer-big-data. Accessed 12 January 2016
  • 13
    • 85015798603 scopus 로고    scopus 로고
    • The future of crime prevention
    • IEEE Institute, New York
    • Rozenfeld M (2016) The future of crime prevention. IEEE Institute, New York. http://theinstitute.ieee.org/technology-focus/technology-topic/the-future-of-crime-prevention. Accessed 12 January 2016
    • (2016)
    • Rozenfeld, M.1
  • 14
    • 84991957633 scopus 로고    scopus 로고
    • NASA Jet Propulsion Laboratory, Managing the deluge of ’Big Data’ from space. Accessed 12 January 2016
    • NASA Jet Propulsion Laboratory, Managing the deluge of ’Big Data’ from space. http://solarsystem.nasa.gov/news/display.cfm?News_ID=45192. Accessed 12 January 2016
  • 16
    • 84899432914 scopus 로고    scopus 로고
    • Uniform access to NoSQL systems
    • Atzeni P, Bugiotti F, Rossi L (2014) Uniform access to NoSQL systems. Inf Syst 43:117–133 ISSN 0306–4379
    • (2014) Inf Syst , vol.43 , pp. 117-133
    • Atzeni, P.1    Bugiotti, F.2    Rossi, L.3
  • 17
  • 20
    • 84923224316 scopus 로고    scopus 로고
    • Toward scalable systems for big data analytics: a technology tutorial
    • Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687
    • (2014) IEEE Access , vol.2 , pp. 652-687
    • Hu, H.1    Wen, Y.2    Chua, T.S.3    Li, X.4
  • 21
    • 84892927450 scopus 로고    scopus 로고
    • From big data to big data mining: challenges, issues, and opportunities
    • Che D, Safran M, Peng Z (2013) From big data to big data mining: challenges, issues, and opportunities. In: Lecture notes in computer science, vol 7827, pp 1–15
    • (2013) Lecture notes in computer science , vol.7827 , pp. 1-15
    • Che, D.1    Safran, M.2    Peng, Z.3
  • 24
    • 84904994660 scopus 로고    scopus 로고
    • Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop
    • Liu J, Liu F, Ansari N (2014) Monitoring and analyzing big traffic data of a large-scale cellular network with Hadoop. IEEE Netw 28(4):32–39
    • (2014) IEEE Netw , vol.28 , Issue.4 , pp. 32-39
    • Liu, J.1    Liu, F.2    Ansari, N.3
  • 26
    • 84915785146 scopus 로고    scopus 로고
    • Machine learning for Big Data analytics in plants
    • Ma C, Zhang HH, Wang X (2014) Machine learning for Big Data analytics in plants. Trends Plant Sci 19(12):798–808
    • (2014) Trends Plant Sci , vol.19 , Issue.12 , pp. 798-808
    • Ma, C.1    Zhang, H.H.2    Wang, X.3
  • 28
    • 84991981577 scopus 로고    scopus 로고
    • 3M Meeting Network. Accessed 12 January 2016
    • 3M Meeting Network. http://www.3rd-force.org/meetingnetwork/files/meetingguide_pres.pdf. Accessed 12 January 2016
  • 30
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: a survey on Big Data
    • Philip Chen CL, Zhang CY (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci 275:314–347
    • (2014) Inf Sci , vol.275 , pp. 314-347
    • Philip Chen, C.L.1    Zhang, C.Y.2
  • 32
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • Labrinidis A, Jagadish HV (2012) Challenges and opportunities with big data. Proc VLDB Endow 5(12):2032–2033
    • (2012) Proc VLDB Endow , vol.5 , Issue.12 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.V.2
  • 37
    • 84867282821 scopus 로고    scopus 로고
    • Through the glass
    • Mann S (2012) Through the glass. Light IEEE Technol Soc Mag 31(3):10–14
    • (2012) Light IEEE Technol Soc Mag , vol.31 , Issue.3 , pp. 10-14
    • Mann, S.1
  • 38
    • 84887058308 scopus 로고    scopus 로고
    • Big data: new opportunities and new challenges
    • Michael K, Miller KW (2013) Big data: new opportunities and new challenges. IEEE Comput 46(6):22–24
    • (2013) IEEE Comput , vol.46 , Issue.6 , pp. 22-24
    • Michael, K.1    Miller, K.W.2
  • 39
    • 84923882437 scopus 로고    scopus 로고
    • IEEE international congress on big data
    • Kupwade PH, Seshadri R (2014) Big data security and privacy issues in healthcare. In: 2014 IEEE international congress on big data, pp 762–765
    • (2014) pp 762–765
    • Kupwade, P.H.1
  • 40
    • 84901814945 scopus 로고    scopus 로고
    • Continuous data cleaning. In: 2014 IEEE 30th international conference on data engineering (ICDE)
    • Volkovs M, Fei C, Szlichta J, Miller RJ (2014) Continuous data cleaning. In: 2014 IEEE 30th international conference on data engineering (ICDE), pp 244–255
    • (2014) pp 244–255
    • Volkovs, M.1    Fei, C.2    Szlichta, J.3    Miller, R.J.4
  • 41
    • 84920732044 scopus 로고    scopus 로고
    • Semantic-based intelligent data clean framework for big data. In: 2014 international conference on security, pattern analysis, and cybernetics (SPAC)
    • Wang J, Song Z, Li Q, Yu J, Chen F (2014) Semantic-based intelligent data clean framework for big data. In: 2014 international conference on security, pattern analysis, and cybernetics (SPAC), pp 448–453
    • (2014) pp 448–453
    • Wang, J.1    Song, Z.2    Li, Q.3    Yu, J.4    Chen, F.5
  • 42
    • 85084016251 scopus 로고    scopus 로고
    • Data curation at scale: the data tamer system. In: Proceedings of biennial ACM conference on innovative data systems research (CIDR’13)
    • Stonebraker M, Bruckner D, Ilyas I, Beskales G, Cherniack M, Zdonik S, Pagan A, Xu S (2013) Data curation at scale: the data tamer system. In: Proceedings of biennial ACM conference on innovative data systems research (CIDR’13), Alisomar
    • (2013) Alisomar
    • Stonebraker, M.1    Bruckner, D.2    Ilyas, I.3    Beskales, G.4    Cherniack, M.5    Zdonik, S.6    Pagan, A.7    Xu, S.8
  • 43
    • 84923917788 scopus 로고    scopus 로고
    • Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE international congress on big data (BigData Congress)
    • Bansal SK (2014) Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE international congress on big data (BigData Congress), pp 522–529
    • (2014) pp 522–529
    • Bansal, S.K.1
  • 44
    • 84988298991 scopus 로고    scopus 로고
    • IEEE international conference on big data (Big Data)
    • Kadadi A, Agrawal R, Nyamful C, Atiq R (2014) Challenges of data integration and interoperability in big data. In: 2014 IEEE international conference on big data (Big Data), pp 38–40
    • (2014) pp 38–40
    • Kadadi, A.1    Agrawal, R.2    Nyamful, C.3
  • 45
    • 84881350480 scopus 로고    scopus 로고
    • IEEE 29th international conference on data engineering (ICDE)
    • Dong XL, Srivastava D (2013) Big data integration. In: 2013 IEEE 29th international conference on data engineering (ICDE), pp 1245–1248
    • (2013) pp 1245–1248
    • Dong, X.L.1
  • 46
    • 84893265645 scopus 로고    scopus 로고
    • The architecture and design of a community-based cloud platform for curating big data. In: 2013 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC)
    • Sowe SK, Zettsu K (2013) The architecture and design of a community-based cloud platform for curating big data. In: 2013 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC), pp 171–178
    • (2013) pp 171–178
    • Sowe, S.K.1    Zettsu, K.2
  • 47
    • 84910111297 scopus 로고    scopus 로고
    • Embedding AI and crowdsourcing in the big data lake
    • O’Leary DE (2014) Embedding AI and crowdsourcing in the big data lake. IEEE Intell Syst 29(5):70–73
    • (2014) IEEE Intell Syst , vol.29 , Issue.5 , pp. 70-73
    • O’Leary, D.E.1
  • 48
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. ACM Commun 51(1):107–113
    • (2008) ACM Commun , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 50
    • 84912115001 scopus 로고    scopus 로고
    • SWORD: workload-aware data placement and replica selection for cloud data management systems
    • Kumar KA, Quamar A, Deshpande A, Khuller S (2014) SWORD: workload-aware data placement and replica selection for cloud data management systems. VLDB J 23(6):845–870
    • (2014) VLDB J , vol.23 , Issue.6 , pp. 845-870
    • Kumar, K.A.1    Quamar, A.2    Deshpande, A.3    Khuller, S.4
  • 52
    • 84937202563 scopus 로고    scopus 로고
    • CPCDN: content delivery powered by context and user intelligence
    • Wang Z, Zhu W, Chen M, Sun L, Yang S (2015) CPCDN: content delivery powered by context and user intelligence. IEEE Trans Multimed 17(1):92–103
    • (2015) IEEE Trans Multimed , vol.17 , Issue.1 , pp. 92-103
    • Wang, Z.1    Zhu, W.2    Chen, M.3    Sun, L.4    Yang, S.5
  • 53
    • 84904634156 scopus 로고    scopus 로고
    • Practical resource provisioning and caching with dynamic resilience for cloud-based content distribution networks
    • Menglan H, Jun L, Yang W, Veeravalli B (2014) Practical resource provisioning and caching with dynamic resilience for cloud-based content distribution networks. IEEE Trans Parall Distrib Syst 25(8):2169–2179
    • (2014) IEEE Trans Parall Distrib Syst , vol.25 , Issue.8 , pp. 2169-2179
    • Menglan, H.1    Jun, L.2    Yang, W.3    Veeravalli, B.4
  • 54
    • 84905001178 scopus 로고    scopus 로고
    • Toward integrating overlay and physical networks for robust parallel processing architecture
    • Suto K, Nishiyama H, Kato N, Nakachi T, Fujii T, Takahara A (2014) Toward integrating overlay and physical networks for robust parallel processing architecture. IEEE Netw 28(4):40–45
    • (2014) IEEE Netw , vol.28 , Issue.4 , pp. 40-45
    • Suto, K.1    Nishiyama, H.2    Kato, N.3    Nakachi, T.4    Fujii, T.5    Takahara, A.6
  • 55
    • 84897147841 scopus 로고    scopus 로고
    • Optimal delivery of rate-adaptive streams in underprovisioned networks
    • Jiayi L, Rosenberg C, Simon G, Texier G (2014) Optimal delivery of rate-adaptive streams in underprovisioned networks. IEEE J Select Areas Commun 32(4):706–718
    • (2014) IEEE J Select Areas Commun , vol.32 , Issue.4 , pp. 706-718
    • Jiayi, L.1    Rosenberg, C.2    Simon, G.3    Texier, G.4
  • 56
    • 84908646839 scopus 로고    scopus 로고
    • Ophidia: a full software stack for scientific data analytics. In: 2014 international conference on high performance computing & simulation (HPCS)
    • Fiore S, D’Anca A, Elia D, Palazzo C, Foster I, Williams D, Aloisio G (2014) Ophidia: a full software stack for scientific data analytics. In: 2014 international conference on high performance computing & simulation (HPCS), pp 343–350
    • (2014) pp 343–350
    • Fiore, S.1    D’Anca, A.2    Elia, D.3    Palazzo, C.4    Foster, I.5    Williams, D.6    Aloisio, G.7
  • 57
    • 0038525766 scopus 로고
    • A reconfigurable architecture for image processing and computer vision
    • Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recognit Artif Intell (IJPRAI) 9(2):201–229. (Special issue on VLSI Algorithms and Architectures for Computer Vision. Image Processing, Pattern Recognition and AI)
    • (1995) Int J Pattern Recognit Artif Intell (IJPRAI) 9(2) , vol.201-229
    • Bhandarkar, S.M.1    Arabnia, H.R.2    Smith, J.W.3
  • 58
    • 84901786411 scopus 로고    scopus 로고
    • IEEE 30th international conference on data engineering workshops (ICDEW)
    • Heinze T, Pappalardo V, Jerzak Z, Fetzer C (2014) Auto-scaling techniques for elastic data stream processing. In: 2014 IEEE 30th international conference on data engineering workshops (ICDEW), pp 296–302
    • (2014) pp 296–302
    • Heinze, T.1    Pappalardo, V.2    Jerzak, Z.3
  • 59
    • 84919794610 scopus 로고    scopus 로고
    • Multiple two-phase data processing with mapreduce. In: 2014 IEEE 7th international conference on cloud computing (CLOUD)
    • Hsiang HW, Tse CY, Chien MW (2014) Multiple two-phase data processing with mapreduce. In: 2014 IEEE 7th international conference on cloud computing (CLOUD), pp 352–359
    • (2014) pp 352–359
    • Hsiang, H.W.1    Tse, C.Y.2    Chien, M.W.3
  • 60
    • 0038343501 scopus 로고    scopus 로고
    • Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network
    • Arif Wani M, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25(1):43–63
    • (2003) J Supercomput , vol.25 , Issue.1 , pp. 43-63
    • Arif Wani, M.1    Arabnia, H.R.2
  • 61
    • 84906695225 scopus 로고    scopus 로고
    • IEEE 28th international parallel and distributed processing symposium
    • Mokhtari R, Stumm M (2014) BigKernel—high performance CPU-GPU communication pipelining for big data-style applications. In: 2014 IEEE 28th international parallel and distributed processing symposium, pp 819–828
    • (2014) pp 819–828
    • Mokhtari, R.1
  • 62
    • 84988269525 scopus 로고    scopus 로고
    • Connecting the dots: triangle completion and related problems on large data sets using GPUs. In: 2014 IEEE international conference on big data (Big Data)
    • Chatterjee A, Radhakrishnan S, Sekharan CN (2014) Connecting the dots: triangle completion and related problems on large data sets using GPUs. In: 2014 IEEE international conference on big data (Big Data), pp 1–8
    • (2014) pp 1–8
    • Chatterjee, A.1    Radhakrishnan, S.2    Sekharan, C.N.3
  • 63
    • 0031069719 scopus 로고    scopus 로고
    • A framework for knowledge-based temporal abstraction
    • Shahar Y (1997) A framework for knowledge-based temporal abstraction. Elsevier Artif Intell 90(1–2):79–133
    • (1997) Elsevier Artif Intell , vol.90 , Issue.1-2 , pp. 79-133
    • Shahar, Y.1
  • 64
    • 85032750931 scopus 로고    scopus 로고
    • Outlying sequence detection in large data sets: a data-driven approach
    • Tajer A, Veeravalli VV, Poor HV (2014) Outlying sequence detection in large data sets: a data-driven approach. IEEE Signal Process Mag 31(5):44–56
    • (2014) IEEE Signal Process Mag , vol.31 , Issue.5 , pp. 44-56
    • Tajer, A.1    Veeravalli, V.V.2    Poor, H.V.3
  • 65
    • 0029409067 scopus 로고
    • The REFINE multiprocessor: theoretical properties and algorithms
    • Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Elsevier Parall Comput 21(11):1783–1806
    • (1995) Elsevier Parall Comput , vol.21 , Issue.11 , pp. 1783-1806
    • Bhandarkar, S.M.1    Arabnia, H.R.2
  • 66
    • 0345807877 scopus 로고
    • The Hough transform on a reconfigurable multi-ring network
    • Bhandarkar SM, Arabnia HR (1995) The Hough transform on a reconfigurable multi-ring network. J Parall Distrib Comput 24(1):107–114
    • (1995) J Parall Distrib Comput , vol.24 , Issue.1 , pp. 107-114
    • Bhandarkar, S.M.1    Arabnia, H.R.2
  • 67
    • 0030234383 scopus 로고    scopus 로고
    • Parallel stereocorrelation on a reconfigurable multi-ring network
    • Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10(3):243–270
    • (1996) J Supercomput , vol.10 , Issue.3 , pp. 243-270
    • Arabnia, H.R.1    Bhandarkar, S.M.2
  • 70
    • 84864274193 scopus 로고    scopus 로고
    • Big data privacy issues in public social media. In: 6th IEEE international conference on digital ecosystems technologies (DEST)
    • Smith M, Szongott C, Henne B, von Voigt G (2012) Big data privacy issues in public social media. In: 6th IEEE international conference on digital ecosystems technologies (DEST), pp 1–6
    • (2012) pp 1–6
    • Smith, M.1    Szongott, C.2    Henne, B.3    von Voigt, G.4
  • 71
    • 84960963787 scopus 로고    scopus 로고
    • Proximity-aware local-recoding anonymization with mapreduce for scalable big data privacy preservation in cloud
    • Zhang X, Dou W, Pei J, Nepal S, Yang C, Liu C, Chen J (2015) Proximity-aware local-recoding anonymization with mapreduce for scalable big data privacy preservation in cloud. IEEE Trans Comput 64(8):2293–2307
    • (2015) IEEE Trans Comput , vol.64 , Issue.8 , pp. 2293-2307
    • Zhang, X.1    Dou, W.2    Pei, J.3    Nepal, S.4    Yang, C.5    Liu, C.6    Chen, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.