-
1
-
-
84887068590
-
Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin
-
#x0026;
-
Badawy, S.M., Nayl, A.A., El Khashab, R.A., & El-Khateeb, M.A. (2014). Cobalt separation from waste mobile phone batteries using selective precipitation and chelating resin, Journal of Materials Cycles and Waste Management, 16, 739–746.
-
(2014)
Journal of Materials Cycles and Waste Management
, vol.16
, pp. 739-746
-
-
Badawy, S.M.1
Nayl, A.A.2
El Khashab, R.A.3
El-Khateeb, M.A.4
-
2
-
-
84881371990
-
Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone
-
#x0026;
-
Jha, M.K., Kumari, A., Jha, A.K., Kumar, V., Hait, J., & Pandey, B.D. (2013). Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone, Waste Management, 33, 1890–1897.
-
(2013)
Waste Management
, vol.33
, pp. 1890-1897
-
-
Jha, M.K.1
Kumari, A.2
Jha, A.K.3
Kumar, V.4
Hait, J.5
Pandey, B.D.6
-
3
-
-
70450119945
-
A combined recovery process of metals in spent lithium-ion batteries
-
#x0026;
-
Li, J., Shi, P., Wang, Z., Chen, Y., & Chang, C. (2009). A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77, 1132–1136.
-
(2009)
Chemosphere
, vol.77
, pp. 1132-1136
-
-
Li, J.1
Shi, P.2
Wang, Z.3
Chen, Y.4
Chang, C.5
-
4
-
-
84900539741
-
Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques
-
#x0026;
-
Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., & Li, H. (2014). Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques, Waste Management, 34, 1051–1058.
-
(2014)
Waste Management
, vol.34
, pp. 1051-1058
-
-
Zhang, T.1
He, Y.2
Wang, F.3
Ge, L.4
Zhu, X.5
Li, H.6
-
5
-
-
77956148608
-
-
#x0026;,) 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18–20
-
Zhou, X., He, W., Li, G., Zhang, X., Huang, J., & Zhu, S. (2010) Recycling of electrode materials from spent lithium-ion batteries. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), 18–20.
-
(2010)
Recycling of electrode materials from spent lithium-ion batteries
-
-
Zhou, X.1
He, W.2
Li, G.3
Zhang, X.4
Huang, J.5
Zhu, S.6
-
6
-
-
84937818854
-
Acid leaching of Mixed spent Li-ion Batteries
-
#x0026;, online 12 April 2014
-
Nayl, A.A., El Khashab, R.A., Badawy, S.M., & El-Khateeb, M.A. (2014). Acid leaching of Mixed spent Li-ion Batteries, Arabian Journal of Chemistry, Available online 12 April 2014 (doi:10.1016/j.arabjc.2014.04.001).
-
(2014)
Arabian Journal of Chemistry, Available
-
-
Nayl, A.A.1
El Khashab, R.A.2
Badawy, S.M.3
El-Khateeb, M.A.4
-
7
-
-
84867380166
-
Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation
-
#x0026;
-
Shu-guang, Z., Wen-zhi, H., Guang-ming, L., Xu, Z., Xiao-jun, Z., & Ju-wen, H. (2012). Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation, Transactions of Nonferrous Metals Society of China, 22, 2274–2281.
-
(2012)
Transactions of Nonferrous Metals Society of China
, vol.22
, pp. 2274-2281
-
-
Shu-guang, Z.1
Wen-zhi, H.2
Guang-ming, L.3
Xu, Z.4
Xiao-jun, Z.5
Ju-wen, H.6
-
8
-
-
84878982250
-
2 from spent lithium ion batteries separated by vacuum-assisted heat-treating method
-
#x0026;
-
2 from spent lithium ion batteries separated by vacuum-assisted heat-treating method, International Journal of Electrochemical Science, 8, 8201–8209.
-
(2013)
International Journal of Electrochemical Science
, vol.8
, pp. 8201-8209
-
-
Lu, M.1
Zhang, H.2
Wang, B.3
Zheng, X.4
Dai, C.5
-
9
-
-
64949089168
-
2 cathode materials from spent lithium–ion batteries
-
#x0026;
-
2 cathode materials from spent lithium–ion batteries, Ionics, 15, 111–113.
-
(2009)
Ionics
, vol.15
, pp. 111-113
-
-
Li, J.1
Zhao, R.2
He, X.3
Liu, H.4
-
10
-
-
84903155355
-
Recovery of lithium cobalt oxide material from the cathode of spent lithium-ion batteries
-
#x0026;
-
Zhang, Z., He, W., Li, G., Jing Xia, Hu, H., Huang, J., & Zhang, S. (2014). Recovery of lithium cobalt oxide material from the cathode of spent lithium-ion batteries, ECS Electrochemistry Letters, 3, A58–A61.
-
(2014)
ECS Electrochemistry Letters
, vol.3
, pp. A58-A61
-
-
Zhang, Z.1
He, W.2
Li, G.3
Jing, X.4
Hu, H.5
Huang, J.6
Zhang, S.7
-
12
-
-
84859900450
-
Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale
-
#x0026;
-
Wan, X., Huang, Y., & Chen, Y. (2012). Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale, Accounts of Chemical Research, 45, 598.
-
(2012)
Accounts of Chemical Research
, vol.45
, pp. 598
-
-
Wan, X.1
Huang, Y.2
Chen, Y.3
-
13
-
-
84880365701
-
Graphite and graphene oxide electrodes for lithium ion batteries
-
#x0026;
-
Channua, V.S., Bobbab, R., & Holze, R. (2013). Graphite and graphene oxide electrodes for lithium ion batteries, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 245–251.
-
(2013)
Colloids and Surfaces A: Physicochemical and Engineering Aspects
, vol.436
, pp. 245-251
-
-
Channua, V.S.1
Bobbab, R.2
Holze, R.3
-
14
-
-
77956963862
-
Graphene and graphene oxide: Synthesis, properties, and applications
-
#x0026;
-
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., & Ruoff, R.S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications, Advanced Materials, 22, 3906.
-
(2010)
Advanced Materials
, vol.22
, pp. 3906
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
Ruoff, R.S.7
-
15
-
-
84869192722
-
Graphene oxide: Preparation, functionalization, and electrochemical applications
-
#x0026;
-
Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications, Chemical Reviews, 112, 6027.
-
(2012)
Chemical Reviews
, vol.112
, pp. 6027
-
-
Chen, D.1
Feng, H.2
Li, J.3
-
16
-
-
77953494810
-
Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics
-
&
-
Eda, G. & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics, Advanced Materials, 22, 2392.
-
(2010)
Advanced Materials
, vol.22
, pp. 2392
-
-
Eda, G.1
Chhowalla, M.2
-
17
-
-
82455212385
-
Graphene—A promising material for organic photovoltaic cells
-
#x0026;
-
Wan, X., Long, G., Huang, L., & Chen, Y. (2011). Graphene—A promising material for organic photovoltaic cells, Advanced Materials, 23, 5342.
-
(2011)
Advanced Materials
, vol.23
, pp. 5342
-
-
Wan, X.1
Long, G.2
Huang, L.3
Chen, Y.4
-
18
-
-
84855393828
-
Graphene-based composites
-
#x0026;
-
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites, Chemical Society Reviews, 41, 666.
-
(2012)
Chemical Society Reviews
, vol.41
, pp. 666
-
-
Huang, X.1
Qi, X.2
Boey, F.3
Zhang, H.4
-
19
-
-
84886006759
-
Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing
-
&
-
Lightcap, I. & Kamat, P.V. (2013). Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing, Accounts of Chemical Research, 46, 2235.
-
(2013)
Accounts of Chemical Research
, vol.46
, pp. 2235
-
-
Lightcap, I.1
Kamat, P.V.2
-
20
-
-
53849085330
-
Nano-graphene oxide for cellular imaging and drug delivery
-
#x0026;
-
Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203.
-
(2008)
Nano Research
, vol.1
, pp. 203
-
-
Sun, X.1
Liu, Z.2
Welsher, K.3
Robinson, J.T.4
Goodwin, A.5
Zaric, S.6
Dai, H.7
-
21
-
-
84880133779
-
Biomedical applications of graphene and graphene oxide
-
#x0026;
-
Chung, C., Kim, Y.-K., Shin, D., Ryoo, S.-R., Hong, B.H., & Min, D.-H. (2011). Biomedical applications of graphene and graphene oxide, Accounts of Chemical Research, 46, 2211.
-
(2011)
Accounts of Chemical Research
, vol.46
, pp. 2211
-
-
Chung, C.1
Kim, Y.-K.2
Shin, D.3
Ryoo, S.-R.4
Hong, B.H.5
Min, D.-H.6
-
22
-
-
79954657367
-
Graphene and graphene oxide: Biofunctionalization and applications in biotechnology
-
#x0026;
-
Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: Biofunctionalization and applications in biotechnology, Trends in Biotechnology, 29, 205.
-
(2011)
Trends in Biotechnology
, vol.29
, pp. 205
-
-
Wang, Y.1
Li, Z.2
Wang, J.3
Li, J.4
Lin, Y.5
-
23
-
-
78650702855
-
Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology
-
Pyun, J. (2011). Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology, Angewandte Chemie International Edition, 50, 46.
-
(2011)
Angewandte Chemie International Edition
, vol.50
, pp. 46
-
-
Pyun, J.1
-
24
-
-
77955356920
-
Graphite oxide as a photocatalyst for hydrogen production from water
-
#x0026;
-
Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite oxide as a photocatalyst for hydrogen production from water, Advanced Functional Materials, 20, 2255.
-
(2010)
Advanced Functional Materials
, vol.20
, pp. 2255
-
-
Yeh, T.-F.1
Syu, J.-M.2
Cheng, C.3
Chang, T.-H.4
Teng, H.5
-
25
-
-
77956606589
-
Graphene oxide: A convenient carbocatalyst for Facilitating oxidation and hydration reactions
-
#x0026;
-
Dreyer, D.R., Jia, H.-P., & Bielawski, C.W. (2010). Graphene oxide: A convenient carbocatalyst for Facilitating oxidation and hydration reactions, Angewandte Chemie International Edition, 49, 6813.
-
(2010)
Angewandte Chemie International Edition
, vol.49
, pp. 6813
-
-
Dreyer, D.R.1
Jia, H.-P.2
Bielawski, C.W.3
-
26
-
-
77953306236
-
Graphene oxide sheets at interfaces
-
#x0026;
-
Kim, J., Cote, L.J., Franklin Kim, F., Yuan, W., Shull, K.R., & Huang, J. (2010). Graphene oxide sheets at interfaces, Journal of American Chemical Society, 132, 8180.
-
(2010)
Journal of American Chemical Society
, vol.132
, pp. 8180
-
-
Kim, J.1
Cote, L.J.2
Franklin Kim, F.3
Yuan, W.4
Shull, K.R.5
Huang, J.6
-
27
-
-
77957315053
-
Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors
-
#x0026;
-
Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Liu, A., Tang, X., Tsai, C.-H., Huang, Y., & Li, L.-J. (2010). Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano, 4, 5285.
-
(2010)
ACS Nano
, vol.4
, pp. 5285
-
-
Su, C.-Y.1
Xu, Y.2
Zhang, W.3
Zhao, J.4
Liu, A.5
Tang, X.6
Tsai, C.-H.7
Huang, Y.8
Li, L.-J.9
-
28
-
-
74849089912
-
High mobility, printable, and solution-processed graphene electronics
-
#x0026;
-
Wang, S., Ang, P.K., Wang, Z., Tang, A.L.L., Thong, J.T.L., & Loh, K.P. (2010). High mobility, printable, and solution-processed graphene electronics, Nano Letters, 10, 92.
-
(2010)
Nano Letters
, vol.10
, pp. 92
-
-
Wang, S.1
Ang, P.K.2
Wang, Z.3
Tang, A.L.L.4
Thong, J.T.L.5
Loh, K.P.6
-
29
-
-
79951889470
-
Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations
-
#x0026;
-
Lu, G., Park, S., Yu, K., Ruoff, R.S., Ocola, L.E., Rosenmann, D., & Chen, J. (2011). Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations, ACS Nano, 5, 1154.
-
(2011)
ACS Nano
, vol.5
, pp. 1154
-
-
Lu, G.1
Park, S.2
Yu, K.3
Ruoff, R.S.4
Ocola, L.E.5
Rosenmann, D.6
Chen, J.7
-
30
-
-
84860479188
-
Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles
-
#x0026;
-
Chen, K., Lu, G., Chang, J., Mao, S., Yu, K., Cui, S., & Chen, J. (2012). Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles, Analytical Chemistry, 84, 4057.
-
(2012)
Analytical Chemistry
, vol.84
, pp. 4057
-
-
Chen, K.1
Lu, G.2
Chang, J.3
Mao, S.4
Yu, K.5
Cui, S.6
Chen, J.7
-
31
-
-
84864185238
-
Graphene-based electronic sensors
-
#x0026;
-
He, Q., Wu, S., Yin, Z., & Zhang, H. (2012). Graphene-based electronic sensors, Chemical Science 3, 1764.
-
(2012)
Chemical Science
, vol.3
, pp. 1764
-
-
He, Q.1
Wu, S.2
Yin, Z.3
Zhang, H.4
-
32
-
-
77955523935
-
Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications
-
#x0026;
-
He, Q., Sudibya, H.G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Chen, P., & Zhang, H., (2010). Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications, ACS Nano, 4, 3201.
-
(2010)
ACS Nano
, vol.4
, pp. 3201
-
-
He, Q.1
Sudibya, H.G.2
Yin, Z.3
Wu, S.4
Li, H.5
Boey, F.6
Huang, W.7
Chen, P.8
Zhang, H.9
-
33
-
-
79959785207
-
Transparent, flexible, all-reduced graphene oxide thin film transistors
-
#x0026;
-
He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., & Zhang, H. (2011). Transparent, flexible, all-reduced graphene oxide thin film transistors, ACS Nano, 5, 5038.
-
(2011)
ACS Nano
, vol.5
, pp. 5038
-
-
He, Q.1
Wu, S.2
Gao, S.3
Cao, X.4
Yin, Z.5
Li, H.6
Chen, P.7
Zhang, H.8
-
34
-
-
84897005594
-
Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor
-
#x0026;
-
Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., & Zhang, G.-J. (2014). Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor, ACS Nano, 8, 2632.
-
(2014)
ACS Nano
, vol.8
, pp. 2632
-
-
Cai, B.1
Wang, S.2
Huang, L.3
Ning, Y.4
Zhang, Z.5
Zhang, G.-J.6
-
35
-
-
77951686517
-
Biocompatible graphene oxide-based glucose biosensors
-
#x0026;
-
Liu, Y., Yu, D., Zeng, C., Miao, Z., & Dai, L. (2010). Biocompatible graphene oxide-based glucose biosensors, Langmuir, 26, 6158.
-
(2010)
Langmuir
, vol.26
, pp. 6158
-
-
Liu, Y.1
Yu, D.2
Zeng, C.3
Miao, Z.4
Dai, L.5
-
36
-
-
77957714684
-
Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries
-
#x0026;
-
Wang, H., Cui, L.-F., Yang, Y., Casalongue, H.S., Robinson, J.T., Liang, Y., Cui, Y., & Dai, H. (2010). Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries, Journal of American Chemical Society, 132, 13978.
-
(2010)
Journal of American Chemical Society
, vol.132
, pp. 13978
-
-
Wang, H.1
Cui, L.-F.2
Yang, Y.3
Casalongue, H.S.4
Robinson, J.T.5
Liang, Y.6
Cui, Y.7
Dai, H.8
-
37
-
-
78149422502
-
Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage
-
#x0026;
-
Yang, S., Feng, X., Ivanovici, S., & Müllen, K. (2010). Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage, Angewandte Chemie International Edition, 49, 8408.
-
(2010)
Angewandte Chemie International Edition
, vol.49
, pp. 8408
-
-
Yang, S.1
Feng, X.2
Ivanovici, S.3
Müllen, K.4
-
38
-
-
77949356255
-
Silicon nanoparticles–graphene paper composites for Li ion battery anodes
-
#x0026;
-
Lee, J.K., Smith, K.B., Hayner, C.M., & Kung, H.H. (2010). Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chemical Communications, 46, 2025.
-
(2010)
Chemical Communications
, vol.46
, pp. 2025
-
-
Lee, J.K.1
Smith, K.B.2
Hayner, C.M.3
Kung, H.H.4
-
39
-
-
77957061092
-
Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries
-
#x0026;
-
Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., Wen, L., Lu, G.Q., & Cheng, H.-M. (2010). Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chemical Materials, 22, 5306.
-
(2010)
Chemical Materials
, vol.22
, pp. 5306
-
-
Zhou, G.1
Wang, D.-W.2
Li, F.3
Zhang, L.4
Li, N.5
Wu, Z.-S.6
Wen, L.7
Lu, G.Q.8
Cheng, H.-M.9
-
40
-
-
77953853362
-
Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries
-
#x0026;
-
Zhang, M., Lei, D., Yin, X., Chen, L., Li, Q., Wang, Y., & Wang, T. Magnetite/graphene composites: Microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries, Journal of Materials Chemistry, 20, 5538.
-
Journal of Materials Chemistry
, vol.20
, pp. 5538
-
-
Zhang, M.1
Lei, D.2
Yin, X.3
Chen, L.4
Li, Q.5
Wang, Y.6
Wang, T.7
-
41
-
-
50249123111
-
PEGylated nanographene oxide for delivery of water-insoluble cancer drugs
-
#x0026;
-
Liu, Z., Robinson, J.T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, Journal of American Chemical Society, 130, 10876.
-
(2008)
Journal of American Chemical Society
, vol.130
, pp. 10876
-
-
Liu, Z.1
Robinson, J.T.2
Sun, X.3
Dai, H.4
-
42
-
-
70349957898
-
A graphene platform for sensing biomolecules
-
#x0026;
-
Lu, C.-H., Yang, H.-H., Zhu, C.-L., Chen, Z., & Chen, G.-N. (2009). A graphene platform for sensing biomolecules, Angewandte Chemie International Edition, 48, 4785.
-
(2009)
Angewandte Chemie International Edition
, vol.48
, pp. 4785
-
-
Lu, C.-H.1
Yang, H.-H.2
Zhu, C.-L.3
Chen, Z.4
Chen, G.-N.5
-
43
-
-
77955821689
-
Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells
-
#x0026;
-
Wang, Y., Li, Z., Hu, D., Lin, C.-T., Li, J., & Lin, Y. (2010). Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells, Journal of American Chemical Society, 132, 9274.
-
(2010)
Journal of American Chemical Society
, vol.132
, pp. 9274
-
-
Wang, Y.1
Li, Z.2
Hu, D.3
Lin, C.-T.4
Li, J.5
Lin, Y.6
-
44
-
-
79955015411
-
Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity
-
#x0026;
-
Song, Y., Chen, Y., Feng, L., Ren, J., & Qu, X. (2011). Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity, Chemical Communications, 47, 4436.
-
(2011)
Chemical Communications
, vol.47
, pp. 4436
-
-
Song, Y.1
Chen, Y.2
Feng, L.3
Ren, J.4
Qu, X.5
-
46
-
-
77949880674
-
The chemistry of graphene oxide
-
#x0026;
-
Dreyer, D.R., Park, S., Bielawski, C.W., & Ruoff, R.S. (2010). The chemistry of graphene oxide, Chemical Society Reviews, 39, 228–240.
-
(2010)
Chemical Society Reviews
, vol.39
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
47
-
-
84901280422
-
Growth of graphene from food, insects, and waste
-
#x0026;
-
Akhavan, O., Keyvan Bijanzad, K., & Mirsepah, A. (2014). Growth of graphene from food, insects, and waste, RSC Advances, 4, 20441–20441.
-
(2014)
RSC Advances
, vol.4
, pp. 20441
-
-
Akhavan, O.1
Keyvan Bijanzad, K.2
Mirsepah, A.3
-
48
-
-
84937543664
-
Graphene oxide synthesis from agro waste
-
#x0026;
-
Somanathan, T., Prasad, K., Ostrikov, K., Vemula, A.S., & Mohana Krishna, M. (2015). Graphene oxide synthesis from agro waste, Nanomaterials, 5, 826–834.
-
(2015)
Nanomaterials
, vol.5
, pp. 826-834
-
-
Somanathan, T.1
Prasad, K.2
Ostrikov, K.3
Vemula, A.S.4
Mohana Krishna, M.5
-
49
-
-
84990214901
-
-
#x0026;,) Primorsko, Bulgaria
-
Vasilchina, H., Aleksandrova, A., Momchilov, A., Predoana, B.B., Barau, A., & Zaharesku, M. (2005) Proceedings of the International Workshop “Portable and Emergency Energy Sources—from Materials to Systems” 16–22, Primorsko, Bulgaria.
-
(2005)
Proceedings of the International Workshop “Portable and Emergency Energy Sources—from Materials to Systems” 16–22
-
-
Vasilchina, H.1
Aleksandrova, A.2
Momchilov, A.3
Predoana, B.B.4
Barau, A.5
Zaharesku, M.6
-
50
-
-
84877758467
-
The effect of carbon morphology on the LiCoO2 cathode of lithium ion batteries
-
Kwon, N.H. (2013). The effect of carbon morphology on the LiCoO2 cathode of lithium ion batteries, Solid State Sciences, 21, 59–65.
-
(2013)
Solid State Sciences
, vol.21
, pp. 59-65
-
-
Kwon, N.H.1
-
51
-
-
67049114637
-
Chemical methods for the production of graphenes
-
&
-
Park, S. & Ruoff, R. (2009). Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217–224.
-
(2009)
Nature Nanotechnology
, vol.4
, pp. 217-224
-
-
Park, S.1
Ruoff, R.2
-
53
-
-
33751252241
-
Water dynamics in graphite oxide investigated with neutron scattering
-
#x0026;
-
Buchsteiner, A., Lerf, A., & Pieper, J. (2006). Water dynamics in graphite oxide investigated with neutron scattering, Journal of Physical Chemistry B, 110, 22328–22338.
-
(2006)
Journal of Physical Chemistry B
, vol.110
, pp. 22328-22338
-
-
Buchsteiner, A.1
Lerf, A.2
Pieper, J.3
-
54
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich, S., Dikin, D., Piner, R., Kohlhaas, K., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S., Ruof, R. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558–1565.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.2
Piner, R.3
Kohlhaas, K.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.8
Ruof, R.9
-
55
-
-
70349557676
-
A green approach to the synthesis of graphene nanosheets
-
#x0026;
-
Guo, H., Wang, X., Qian, Q., Wang, F., & Xia, X. (2009). A green approach to the synthesis of graphene nanosheets, ACS Nano, 3, 2653–2659.
-
(2009)
ACS Nano
, vol.3
, pp. 2653-2659
-
-
Guo, H.1
Wang, X.2
Qian, Q.3
Wang, F.4
Xia, X.5
-
56
-
-
84882293569
-
Effect of graphene oxide doping on superconducting properties of bulk MgB2
-
#x0026;
-
Sudesh, Kumar, N., Das, S., Bernhard, C., G.D., & Varma, G.D., (2013). Effect of graphene oxide doping on superconducting properties of bulk MgB2, Superconductor Science and Technology, 26, 095008.
-
(2013)
Superconductor Science and Technology
, vol.26
, pp. 095008
-
-
Sudesh, N.1
Das, S.2
Bernhard, C.3
Varma, G.D.4
-
57
-
-
79951877654
-
Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone
-
#x0026;
-
Pham, V.H., Cuong, T.V., Hur, S.H., Oh, E., Kim, E.J., Shin, E.W., & Chung, J.S. (2011). Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone, Journal of Materials Chemistry, 21, 3371–3377.
-
(2011)
Journal of Materials Chemistry
, vol.21
, pp. 3371-3377
-
-
Pham, V.H.1
Cuong, T.V.2
Hur, S.H.3
Oh, E.4
Kim, E.J.5
Shin, E.W.6
Chung, J.S.7
-
58
-
-
53549108020
-
Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide
-
&
-
Nethravathi, C. & Rajamathi, M. (2008). Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 46, 1994–1998.
-
(2008)
Carbon
, vol.46
, pp. 1994-1998
-
-
Nethravathi, C.1
Rajamathi, M.2
-
59
-
-
70349557676
-
A green approach to the synthesis of graphene nanosheets
-
#x0026;
-
Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., & Xia, X.H. (2009). A green approach to the synthesis of graphene nanosheets, ACS Nano 22, 3, 2653–2659.
-
(2009)
ACS Nano
, vol.22
, Issue.3
, pp. 2653-2659
-
-
Guo, H.L.1
Wang, X.F.2
Qian, Q.Y.3
Wang, F.B.4
Xia, X.H.5
-
60
-
-
80755143034
-
One-pot reduction of graphene oxide at subzero temperatures
-
#x0026;
-
Cui, P., Lee, J., Hwanga, E., & Lee, H. (2011). One-pot reduction of graphene oxide at subzero temperatures, Chemical Communications, 47, 12370–12372.
-
(2011)
Chemical Communications
, vol.47
, pp. 12370-12372
-
-
Cui, P.1
Lee, J.2
Hwanga, E.3
Lee, H.4
-
61
-
-
84864921131
-
-
#x0026;,) Journal of Chemistry,, 6
-
Thema, F.T., Moloto, M.J., Dikio, E.D., Nyangiwe, N.N., Kotsedi, L., Maaza, M., & Khenfouch, M. (2013) Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide, Journal of Chemistry, 2013, 150536, 6 pages.
-
(2013)
Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide
, vol.2013
, pp. 150536
-
-
Thema, F.T.1
Moloto, M.J.2
Dikio, E.D.3
Nyangiwe, N.N.4
Kotsedi, L.5
Maaza, M.6
Khenfouch, M.7
|