메뉴 건너뛰기




Volumn 124, Issue , 2016, Pages 150-160

Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature

Author keywords

Agent; Estimation; Extreme Learning Machine (ELM); Self Adaptive Evolutionary Extreme Learning Machine (SaE ELM); Soil temperature

Indexed keywords

AGENTS; ALGORITHMS; ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; ESTIMATION; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; KNOWLEDGE ACQUISITION; NEURAL NETWORKS; SOILS; TEMPERATURE;

EID: 84962881154     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2016.03.025     Document Type: Article
Times cited : (106)

References (49)
  • 1
    • 84960433511 scopus 로고    scopus 로고
    • Prediction of heat load in district heating systems by support vector machine with firefly searching algorithm
    • Al-Shammari E.T., Keivani A., Shamshirband S., Mostafaeipour A., Yee P.L., Petkovic D., Ch S. Prediction of heat load in district heating systems by support vector machine with firefly searching algorithm. Energy 2016, 95:266-273.
    • (2016) Energy , vol.95 , pp. 266-273
    • Al-Shammari, E.T.1    Keivani, A.2    Shamshirband, S.3    Mostafaeipour, A.4    Yee, P.L.5    Petkovic, D.6    Ch, S.7
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 4
    • 78650014065 scopus 로고    scopus 로고
    • Prediction of soil temperature using regression and artificial neural network models
    • Bilgili M. Prediction of soil temperature using regression and artificial neural network models. Meteorol. Atmos. Phys. 2010, 110:59-70.
    • (2010) Meteorol. Atmos. Phys. , vol.110 , pp. 59-70
    • Bilgili, M.1
  • 5
    • 84859183975 scopus 로고    scopus 로고
    • Regional assessment of monthly soil temperatures in the Aegean Region of Turkey
    • Bilgili M. Regional assessment of monthly soil temperatures in the Aegean Region of Turkey. Arab. J. Sci. Eng. 2012, 37:765-775.
    • (2012) Arab. J. Sci. Eng. , vol.37 , pp. 765-775
    • Bilgili, M.1
  • 6
    • 84871989698 scopus 로고    scopus 로고
    • Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models
    • Bilgili M., Sahin B., Sangun L. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models. Environ. Monit. Assess. 2013, 185:347-358.
    • (2013) Environ. Monit. Assess. , vol.185 , pp. 347-358
    • Bilgili, M.1    Sahin, B.2    Sangun, L.3
  • 7
    • 84869885866 scopus 로고    scopus 로고
    • Self-adaptive evolutionary extreme learning machine
    • Cao J., Lin Z., Huang G.B. Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 2012, 36:285-305.
    • (2012) Neural Process. Lett. , vol.36 , pp. 285-305
    • Cao, J.1    Lin, Z.2    Huang, G.B.3
  • 9
    • 84962782056 scopus 로고    scopus 로고
    • An efficient neural networks based genetic algorithm model for soil temperature prediction
    • Gill J., Singh S. An efficient neural networks based genetic algorithm model for soil temperature prediction. Int. J. Emerg. Technol. Eng. Res. (IJETER) 2015, 3:1-5.
    • (2015) Int. J. Emerg. Technol. Eng. Res. (IJETER) , vol.3 , pp. 1-5
    • Gill, J.1    Singh, S.2
  • 10
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • Ghouti L., Sheltami T.R., Alutaibi K.S. Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Comput. Sci. 2013, 19:305-312.
    • (2013) Procedia Comput. Sci. , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 11
    • 0024828012 scopus 로고
    • Soil temperature effects of biomass burning in windrows after clearing a tropical rainforest
    • Ghuman B.S., Lal R. Soil temperature effects of biomass burning in windrows after clearing a tropical rainforest. Field Crops Res. 1989, 22:1-10.
    • (1989) Field Crops Res. , vol.22 , pp. 1-10
    • Ghuman, B.S.1    Lal, R.2
  • 13
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 14
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17:879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 15
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • Huang G., Huang G.B., Song S., You K. Trends in extreme learning machines: a review. Neural Netw. 2015, 61:32-48.
    • (2015) Neural Netw. , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 16
    • 0036602618 scopus 로고    scopus 로고
    • Quality control for USDA NRCS SM/ST network soil temperatures: a method and a dataset
    • Hu Q., Feng S., Schaefer G. Quality control for USDA NRCS SM/ST network soil temperatures: a method and a dataset. J. Appl. Meteorol. 2002, 41:607-619.
    • (2002) J. Appl. Meteorol. , vol.41 , pp. 607-619
    • Hu, Q.1    Feng, S.2    Schaefer, G.3
  • 17
    • 40949103966 scopus 로고    scopus 로고
    • Measuring soil temperature and moisture using wireless MEMS sensors
    • Jackson T.S., Mansfield K., Saafi M., Colman T., Romine P. Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 2008, 41:381-390.
    • (2008) Measurement , vol.41 , pp. 381-390
    • Jackson, T.S.1    Mansfield, K.2    Saafi, M.3    Colman, T.4    Romine, P.5
  • 18
    • 84873417698 scopus 로고    scopus 로고
    • Prediction of annual and seasonal soil temperature variation using artificial neural network
    • Jebamalar A.S., Raja S., Thambi A., Sunitha B.S.J. Prediction of annual and seasonal soil temperature variation using artificial neural network. Indian J. Radio Space Phys. 2012, 41(1):48-57.
    • (2012) Indian J. Radio Space Phys. , vol.41 , Issue.1 , pp. 48-57
    • Jebamalar, A.S.1    Raja, S.2    Thambi, A.3    Sunitha, B.S.J.4
  • 19
    • 57749091524 scopus 로고    scopus 로고
    • Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index
    • Kätterer T., Andrén O. Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index. Acta Agric. Scand., Sect. B-Plant Soil Sci. 2009, 59:77-86.
    • (2009) Acta Agric. Scand., Sect. B-Plant Soil Sci. , vol.59 , pp. 77-86
    • Kätterer, T.1    Andrén, O.2
  • 20
    • 84931568449 scopus 로고    scopus 로고
    • Modeling soil temperatures at different depths by using three different neural computing techniques
    • Kisi O., Tombul M., Kermani M.Z. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol. 2015, 121:377-387.
    • (2015) Theor. Appl. Climatol. , vol.121 , pp. 377-387
    • Kisi, O.1    Tombul, M.2    Kermani, M.Z.3
  • 21
    • 33745866181 scopus 로고    scopus 로고
    • World map of the Köppen-Geiger climate classification updated
    • Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15(3):259-263.
    • (2006) Meteorol. Z. , vol.15 , Issue.3 , pp. 259-263
    • Kottek, M.1    Grieser, J.2    Beck, C.3    Rudolf, B.4    Rubel, F.5
  • 24
    • 0036497467 scopus 로고    scopus 로고
    • On estimating soil surface temperature profiles
    • Mihalakakou G. On estimating soil surface temperature profiles. Energy Build. 2002, 34:251-259.
    • (2002) Energy Build. , vol.34 , pp. 251-259
    • Mihalakakou, G.1
  • 25
    • 84962893252 scopus 로고    scopus 로고
    • Artificial neural network approach for modeling of soil temperature: a case study for Bathalagoda area
    • Napagoda N.A.D.N., Tilakaratne C.D. Artificial neural network approach for modeling of soil temperature: a case study for Bathalagoda area. Sri Lankan J. Appl. Stat. 2012, 13:39-59.
    • (2012) Sri Lankan J. Appl. Stat. , vol.13 , pp. 39-59
    • Napagoda, N.A.D.N.1    Tilakaratne, C.D.2
  • 26
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • Nian R., He B., Zheng B., Heeswijk M.V., Yu Q., Miche Y., et al. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 2014, 128:273-284.
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 28
    • 79960795064 scopus 로고    scopus 로고
    • Artificial neural network model for estimating the soil temperature
    • Ozturk M., Salman O., Koc M. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 2011, 91:551-562.
    • (2011) Can. J. Soil Sci. , vol.91 , pp. 551-562
    • Ozturk, M.1    Salman, O.2    Koc, M.3
  • 31
    • 77952553337 scopus 로고    scopus 로고
    • Application of extreme learning machine method for time series analysis
    • Singh R., Balasundaram S. Application of extreme learning machine method for time series analysis. Int. J. Intell. Technol. 2007, 2:256-262.
    • (2007) Int. J. Intell. Technol. , vol.2 , pp. 256-262
    • Singh, R.1    Balasundaram, S.2
  • 32
    • 84857726214 scopus 로고    scopus 로고
    • Particle swarm optimization trained neural network for aquifer parameter estimation
    • Sudheer C., Mathur S. Particle swarm optimization trained neural network for aquifer parameter estimation. KSCE J. Civil Eng. 2012, 16:298-307.
    • (2012) KSCE J. Civil Eng. , vol.16 , pp. 298-307
    • Sudheer, C.1    Mathur, S.2
  • 33
    • 78650738248 scopus 로고    scopus 로고
    • Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
    • Tabari H., Sabziparvar A.A., Ahmadi M. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2011, 110:135-142.
    • (2011) Meteorol. Atmos. Phys. , vol.110 , pp. 135-142
    • Tabari, H.1    Sabziparvar, A.A.2    Ahmadi, M.3
  • 34
    • 84936933519 scopus 로고    scopus 로고
    • Short-term forecasting of soil temperature using artificial neural network
    • Tabari H., Talaee P.H., Willems P. Short-term forecasting of soil temperature using artificial neural network. Meteorol. Appl. 2015, 22:576-585.
    • (2015) Meteorol. Appl. , vol.22 , pp. 576-585
    • Tabari, H.1    Talaee, P.H.2    Willems, P.3
  • 35
    • 84891640254 scopus 로고    scopus 로고
    • Daily soil temperature modeling using neuro-fuzzy approach
    • Talaee P.H. Daily soil temperature modeling using neuro-fuzzy approach. Theor. Appl. Climatol. 2014, 118:481-489.
    • (2014) Theor. Appl. Climatol. , vol.118 , pp. 481-489
    • Talaee, P.H.1
  • 36
    • 84931561658 scopus 로고    scopus 로고
    • Extreme learning machine with parallel layer perceptrons
    • Tavares L.D., Saldanha R.R., Vieira D.A.G. Extreme learning machine with parallel layer perceptrons. Neurocomputing 2015, 166:164-171.
    • (2015) Neurocomputing , vol.166 , pp. 164-171
    • Tavares, L.D.1    Saldanha, R.R.2    Vieira, D.A.G.3
  • 37
    • 0032477357 scopus 로고    scopus 로고
    • Diurnal soil temperature fluctuations for different erosion classes of an oxisol at Mlingano, Tanzania
    • Tenge A.J., Kagihura F.B.S., Lal R., Singh B.R. Diurnal soil temperature fluctuations for different erosion classes of an oxisol at Mlingano, Tanzania. Soil Till. Res. 1998, 49:211-217.
    • (1998) Soil Till. Res. , vol.49 , pp. 211-217
    • Tenge, A.J.1    Kagihura, F.B.S.2    Lal, R.3    Singh, B.R.4
  • 38
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X., Han M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145:90-97.
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 39
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein-protein interaction sites based on extreme learning machines
    • Wang D.D., Wang R., Yan H. Fast prediction of protein-protein interaction sites based on extreme learning machines. Neurocomputing 2014, 128:258-266.
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 40
    • 84929698635 scopus 로고    scopus 로고
    • Monarch butterfly optimization
    • Online first
    • Wang G.G., Deb S., Cui Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 128. Online first. 10.1007/s00521-015-1923-y.
    • (2015) Neural Comput. Appl. , vol.128
    • Wang, G.G.1    Deb, S.2    Cui, Z.3
  • 41
    • 84951741242 scopus 로고    scopus 로고
    • Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
    • in press
    • Wang G.G., Deb S., Coelho L.S. Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2015, in press, http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijbic.
    • (2015) Int. J. Bio-Inspired Comput.
    • Wang, G.G.1    Deb, S.2    Coelho, L.S.3
  • 42
    • 84884521545 scopus 로고    scopus 로고
    • Incorporating mutation scheme into krill herd algorithm for global numerical optimization
    • Wang G.G., Guo L., Wang H., Duan H., Liu L., Jiang L. Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24(3):853-871.
    • (2014) Neural Comput. Appl. , vol.24 , Issue.3 , pp. 853-871
    • Wang, G.G.1    Guo, L.2    Wang, H.3    Duan, H.4    Liu, L.5    Jiang, L.6
  • 43
    • 84952980775 scopus 로고    scopus 로고
    • Hybridizing harmony search algorithm with cuckoo search for global numerical optimization
    • January 2016
    • Wang G.G., Gandomi A.H., Zhao X., Eric Chu H.C. Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft. Comput. 2016, 20(1):273-285. January 2016.
    • (2016) Soft. Comput. , vol.20 , Issue.1 , pp. 273-285
    • Wang, G.G.1    Gandomi, A.H.2    Zhao, X.3    Eric Chu, H.C.4
  • 44
    • 84880763583 scopus 로고    scopus 로고
    • Spatiotemporal modeling of monthly soil temperature using artificial neural networks
    • Wu W., Tang X.-P., Guo N.-J., Yang C., Liu H.-B., Shang Y.-F. Spatiotemporal modeling of monthly soil temperature using artificial neural networks. Theor. Appl. Climatol. 2013, 113:481-494.
    • (2013) Theor. Appl. Climatol. , vol.113 , pp. 481-494
    • Wu, W.1    Tang, X.-P.2    Guo, N.-J.3    Yang, C.4    Liu, H.-B.5    Shang, Y.-F.6
  • 45
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • Yu Q., Miche Y., Séverin E., Lendasse A. Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 2014, 128:296-302.
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4
  • 46
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • Wong P.K., Wong K.I., Vong C.M., Cheung C.S. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew. Energy 2015, 74:640-647.
    • (2015) Renew. Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 47
    • 0035029565 scopus 로고    scopus 로고
    • An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia
    • Zhang T., Barry R.G., Gilichinsky D., Bykhovets S.S., Sorokovikov V.A., Ye J. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Climatic Change 2001, 49:41-76.
    • (2001) Climatic Change , vol.49 , pp. 41-76
    • Zhang, T.1    Barry, R.G.2    Gilichinsky, D.3    Bykhovets, S.S.4    Sorokovikov, V.A.5    Ye, J.6
  • 48
    • 84885971266 scopus 로고    scopus 로고
    • Forecasting model of coal mine water inrush based on extreme learning machine
    • Zhao Z., Li P., Xu X. Forecasting model of coal mine water inrush based on extreme learning machine. Appl. Math. Inf. Sci. 2013, 7:1243-1250.
    • (2013) Appl. Math. Inf. Sci. , vol.7 , pp. 1243-1250
    • Zhao, Z.1    Li, P.2    Xu, X.3
  • 49
    • 84951119431 scopus 로고    scopus 로고
    • Multi-level forecasting model of coal mine water inrush based on self-adaptive evolutionary extreme learning machine
    • Zhao Z., Hu M. Multi-level forecasting model of coal mine water inrush based on self-adaptive evolutionary extreme learning machine. Appl. Math. Inf. Sci. Lett. 2014, 2(3):103-110.
    • (2014) Appl. Math. Inf. Sci. Lett. , vol.2 , Issue.3 , pp. 103-110
    • Zhao, Z.1    Hu, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.