메뉴 건너뛰기




Volumn , Issue , 2000, Pages

Class-based language model adaptation using mixtures of word-class weights

Author keywords

[No Author keywords available]

Indexed keywords

MIXTURES; SPEECH RECOGNITION;

EID: 84962878404     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (5)
  • 1
    • 85123963268 scopus 로고
    • Improved clustering techniques for class-based statistical language modelling
    • R. Kneser and H. Ney, "Improved clustering techniques for class-based statistical language modelling"; Proc. Eurospeech 1993, pp. 973-976
    • (1993) Proc. Eurospeech , pp. 973-976
    • Kneser, R.1    Ney, H.2
  • 2
    • 0030369272 scopus 로고    scopus 로고
    • Modelling long distance dependence in language: Topic mixtures vs. Dynamic cache models
    • R. Iyer and M. Ostendorf, "Modelling Long Distance Dependence in Language: Topic Mixtures vs. Dynamic Cache Models"; Proc. ICSLP 1996, Volume 1 pp. 236-239
    • (1996) Proc. ICSLP , vol.1 , pp. 236-239
    • Iyer, R.1    Ostendorf, M.2
  • 3
    • 0027192617 scopus 로고
    • On the dynamic adaptation of stochastic language models
    • R. Kneser and V. Steinbiss, "On the Dynamic Adaptation of Stochastic Language Models"; Proc. ICASSP 1993, pp. 586-589
    • (1993) Proc. ICASSP , pp. 586-589
    • Kneser, R.1    Steinbiss, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.