메뉴 건너뛰기




Volumn 441, Issue 1, 2016, Pages 194-210

Entire solutions of fully nonlinear elliptic equations with a superlinear gradient term

Author keywords

Comparison principles; Entire solutions; Fully nonlinear elliptic equations; Osserman functions; Viscosity solutions

Indexed keywords


EID: 84962850107     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2016.03.083     Document Type: Article
Times cited : (16)

References (22)
  • 1
    • 84869061741 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity
    • Alarcón S., García-Melián J., Quaas A. Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity. J. Anal. Math. 2012, 118(1):83-104.
    • (2012) J. Anal. Math. , vol.118 , Issue.1 , pp. 83-104
    • Alarcón, S.1    García-Melián, J.2    Quaas, A.3
  • 2
    • 84939465817 scopus 로고    scopus 로고
    • Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians
    • Barles G., Koike S., Ley O., Topp E. Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians. Calc. Var. Partial Differential Equations 2015, 54(1):539-572.
    • (2015) Calc. Var. Partial Differential Equations , vol.54 , Issue.1 , pp. 539-572
    • Barles, G.1    Koike, S.2    Ley, O.3    Topp, E.4
  • 4
    • 0000447574 scopus 로고
    • N without condition at infinity
    • N without condition at infinity. Appl. Math. Optim. 1984, 12(3):271-282.
    • (1984) Appl. Math. Optim. , vol.12 , Issue.3 , pp. 271-282
    • Brezis, H.1
  • 5
    • 0040059911 scopus 로고    scopus 로고
    • On viscosity solutions of fully nonlinear equations with measurable ingredients
    • Caffarelli L., Crandall M.G., Kocan M., Świȩch A. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 1996, 49(4):365-397.
    • (1996) Comm. Pure Appl. Math. , vol.49 , Issue.4 , pp. 365-397
    • Caffarelli, L.1    Crandall, M.G.2    Kocan, M.3    Świȩch, A.4
  • 8
    • 84967708673 scopus 로고
    • User's guide to viscosity solutions of second order partial differential equations
    • Crandall M.G., Ishii H., Lions P.-L. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 1992, 27(1):1-67.
    • (1992) Bull. Amer. Math. Soc. (N.S.) , vol.27 , Issue.1 , pp. 1-67
    • Crandall, M.G.1    Ishii, H.2    Lions, P.-L.3
  • 9
    • 0001477395 scopus 로고    scopus 로고
    • On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients
    • Longman, Harlow, A. Alvino, P. Buonocore, V. Ferone, E. Giarrusso, S. Matarasso, G. Trombetti (Eds.) Progress in Elliptic and Parabolic Partial Differential Equations
    • Crandall M.G., Kocan M., Soravia P., Świȩch A. On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients. Pitman Res. Notes Math. Ser. 1996, vol. 350:136-162. Longman, Harlow. A. Alvino, P. Buonocore, V. Ferone, E. Giarrusso, S. Matarasso, G. Trombetti (Eds.).
    • (1996) Pitman Res. Notes Math. Ser. , vol.350 , pp. 136-162
    • Crandall, M.G.1    Kocan, M.2    Soravia, P.3    Świȩch, A.4
  • 10
    • 77954560611 scopus 로고    scopus 로고
    • Superlinear elliptic equation for fully nonlinear operators without growth restrictions for the data
    • Esteban M.J., Felmer P.L., Quaas A. Superlinear elliptic equation for fully nonlinear operators without growth restrictions for the data. Proc. Edinb. Math. Soc. (2) 2010, 53(1):125-141.
    • (2010) Proc. Edinb. Math. Soc. (2) , vol.53 , Issue.1 , pp. 125-141
    • Esteban, M.J.1    Felmer, P.L.2    Quaas, A.3
  • 11
    • 84875577922 scopus 로고    scopus 로고
    • Solvability of nonlinear elliptic equations with gradient terms
    • Felmer P.L., Quaas A., Sirakov B. Solvability of nonlinear elliptic equations with gradient terms. J. Differential Equations 2013, 254(11):4327-4346.
    • (2013) J. Differential Equations , vol.254 , Issue.11 , pp. 4327-4346
    • Felmer, P.L.1    Quaas, A.2    Sirakov, B.3
  • 12
    • 84878534372 scopus 로고    scopus 로고
    • Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity
    • Galise G., Vitolo A. Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at infinity. Int. J. Differ. Equ. 2011.
    • (2011) Int. J. Differ. Equ.
    • Galise, G.1    Vitolo, A.2
  • 14
    • 12744266484 scopus 로고    scopus 로고
    • A Beginner's Guide to the Theory of Viscosity Solutions
    • Mathematical Society of Japan, Tokyo
    • Koike S. A Beginner's Guide to the Theory of Viscosity Solutions. MSJ Mem. 2004, vol. 13. Mathematical Society of Japan, Tokyo.
    • (2004) MSJ Mem. , vol.13
    • Koike, S.1
  • 15
    • 79955478545 scopus 로고    scopus 로고
    • Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear terms
    • Koike S., Ley O. Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear terms. J. Math. Anal. Appl. 2011, 381(1):110-120.
    • (2011) J. Math. Anal. Appl. , vol.381 , Issue.1 , pp. 110-120
    • Koike, S.1    Ley, O.2
  • 16
    • 12744277471 scopus 로고    scopus 로고
    • p-viscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms
    • p-viscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms. NoDEA Nonlinear Differential Equations Appl. 2004, 11(4):491-509.
    • (2004) NoDEA Nonlinear Differential Equations Appl. , vol.11 , Issue.4 , pp. 491-509
    • Koike, S.1    Świȩch, A.2
  • 17
    • 72149133348 scopus 로고    scopus 로고
    • Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients
    • Koike S., Świȩch A. Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients. J. Math. Soc. Japan 2009, 61(3):723-755.
    • (2009) J. Math. Soc. Japan , vol.61 , Issue.3 , pp. 723-755
    • Koike, S.1    Świȩch, A.2
  • 18
    • 12744266482 scopus 로고    scopus 로고
    • Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients
    • Koike S., Takahashi T. Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients. Adv. Differential Equations 2002, 7(4):493-512.
    • (2002) Adv. Differential Equations , vol.7 , Issue.4 , pp. 493-512
    • Koike, S.1    Takahashi, T.2
  • 19
    • 0000104617 scopus 로고
    • Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem
    • Lasry J.M., Lions P.L. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 1989, 283(4):583-630.
    • (1989) Math. Ann. , vol.283 , Issue.4 , pp. 583-630
    • Lasry, J.M.1    Lions, P.L.2
  • 20
    • 33645129142 scopus 로고    scopus 로고
    • N with "absorbing" zero order terms
    • N with "absorbing" zero order terms. Adv. Differential Equations 2000, 5(4-6):681-722.
    • (2000) Adv. Differential Equations , vol.5 , Issue.4-6 , pp. 681-722
    • Leoni, F.1
  • 21
    • 72449126146 scopus 로고    scopus 로고
    • Solvability of uniformly elliptic fully nonlinear PDE
    • Sirakov B. Solvability of uniformly elliptic fully nonlinear PDE. Arch. Ration. Mech. Anal. 2010, 195(2):579-607.
    • (2010) Arch. Ration. Mech. Anal. , vol.195 , Issue.2 , pp. 579-607
    • Sirakov, B.1
  • 22
    • 84906046114 scopus 로고    scopus 로고
    • On the growth of positive entire solutions of elliptic PDEs and their gradients
    • Vitolo A. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete Contin. Dyn. Syst. Ser. S 2014, 7(6):1335-1346.
    • (2014) Discrete Contin. Dyn. Syst. Ser. S , vol.7 , Issue.6 , pp. 1335-1346
    • Vitolo, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.