메뉴 건너뛰기




Volumn 117, Issue , 2016, Pages 79-91

Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas

Author keywords

Digital terrain model; Ground filtering; Ground points; Light detection and ranging; Triangulated irregular network

Indexed keywords

FORESTRY; ITERATIVE METHODS; SIGNAL FILTERING AND PREDICTION; TRIANGULATION;

EID: 84962753074     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.03.016     Document Type: Article
Times cited : (278)

References (36)
  • 1
    • 85044575962 scopus 로고    scopus 로고
    • DEM generation from laser scanner data using adaptive TIN models
    • Axelsson P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogram. Rem. Sens. 2000, 33:111-118.
    • (2000) Int. Arch. Photogram. Rem. Sens. , vol.33 , pp. 111-118
    • Axelsson, P.1
  • 3
    • 33846795151 scopus 로고    scopus 로고
    • Filtering airborne laser scanning data with morphological methods
    • Chen Q., Gong P., Baldocchi D., Xie G. Filtering airborne laser scanning data with morphological methods. Photogram. Eng. Rem. Sens. 2007, 73:175-185.
    • (2007) Photogram. Eng. Rem. Sens. , vol.73 , pp. 175-185
    • Chen, Q.1    Gong, P.2    Baldocchi, D.3    Xie, G.4
  • 4
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 1960, 20:37-46.
    • (1960) Educ. Psychol. Measur. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 5
    • 33947708384 scopus 로고    scopus 로고
    • A multiscale curvature algorithm for classifying discrete return lidar in forested environments
    • Evans J.S., Hudak A.T. A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Trans. Geosci. Remote Sens. 2007, 45:1029-1038.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 1029-1038
    • Evans, J.S.1    Hudak, A.T.2
  • 6
    • 84893979918 scopus 로고    scopus 로고
    • DEM generation from lidar data in wooded mountain areas by cross-section-plane analysis
    • Guan H., Li J., Yu Y., Zhong L., Ji Z. DEM generation from lidar data in wooded mountain areas by cross-section-plane analysis. Int. J. Remote Sens. 2014, 35:927-948.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 927-948
    • Guan, H.1    Li, J.2    Yu, Y.3    Zhong, L.4    Ji, Z.5
  • 8
    • 84897456383 scopus 로고    scopus 로고
    • An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy
    • Hu H., Ding Y., Zhu Q., Wu B., Lin H., Du Z., Zhang Y., Zhang Y. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy. ISPRS J. Photogram. Rem. Sens. 2014, 92:98-111.
    • (2014) ISPRS J. Photogram. Rem. Sens. , vol.92 , pp. 98-111
    • Hu, H.1    Ding, Y.2    Zhu, Q.3    Wu, B.4    Lin, H.5    Du, Z.6    Zhang, Y.7    Zhang, Y.8
  • 9
    • 34147188681 scopus 로고    scopus 로고
    • Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain
    • Kobler A., Pfeifer N., Ogrinc P., Todorovski L., Oštir K., Džeroski S. Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sens. Environ. 2007, 108:9-23.
    • (2007) Remote Sens. Environ. , vol.108 , pp. 9-23
    • Kobler, A.1    Pfeifer, N.2    Ogrinc, P.3    Todorovski, L.4    Oštir, K.5    Džeroski, S.6
  • 10
    • 80053257875 scopus 로고    scopus 로고
    • Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index
    • Korhonen L., Korpela I., Heiskanen J., Maltamo M. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115:1065-1080.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1065-1080
    • Korhonen, L.1    Korpela, I.2    Heiskanen, J.3    Maltamo, M.4
  • 11
    • 0032144628 scopus 로고    scopus 로고
    • Determination of terrain models in wooded areas with airborne laser scanner data
    • Kraus K., Pfeifer N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogram. Rem. Sens. 1998, 53:193-203.
    • (1998) ISPRS J. Photogram. Rem. Sens. , vol.53 , pp. 193-203
    • Kraus, K.1    Pfeifer, N.2
  • 12
    • 84879956914 scopus 로고    scopus 로고
    • A gradient-constrained morphological filtering algorithm for airborne LiDAR
    • Li Y., Wu H., Xu H., An R., Xu J., He Q. A gradient-constrained morphological filtering algorithm for airborne LiDAR. Opt. Laser Technol. 2013, 54:288-296.
    • (2013) Opt. Laser Technol. , vol.54 , pp. 288-296
    • Li, Y.1    Wu, H.2    Xu, H.3    An, R.4    Xu, J.5    He, Q.6
  • 14
    • 84894608378 scopus 로고    scopus 로고
    • Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments
    • Lin X., Zhang J. Segmentation-based filtering of airborne LiDAR point clouds by progressive densification of terrain segments. Remote Sens. 2014, 6:1294-1326.
    • (2014) Remote Sens. , vol.6 , pp. 1294-1326
    • Lin, X.1    Zhang, J.2
  • 15
    • 43549104018 scopus 로고    scopus 로고
    • Airborne LiDAR for DEM generation: some critical issues
    • Liu X. Airborne LiDAR for DEM generation: some critical issues. Prog. Phys. Geogr. 2008, 32:31-49.
    • (2008) Prog. Phys. Geogr. , vol.32 , pp. 31-49
    • Liu, X.1
  • 16
    • 31344454624 scopus 로고    scopus 로고
    • Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia
    • Lucas R.M., Cronin N., Lee A., Moghaddam M., Witte C., Tickle P. Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens. Environ. 2006, 100:407-425.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 407-425
    • Lucas, R.M.1    Cronin, N.2    Lee, A.3    Moghaddam, M.4    Witte, C.5    Tickle, P.6
  • 18
    • 80051744664 scopus 로고    scopus 로고
    • Ground filtering algorithms for airborne LiDAR data: a review of critical issues
    • Meng X., Currit N., Zhao K. Ground filtering algorithms for airborne LiDAR data: a review of critical issues. Remote Sens. 2010, 2:833-860.
    • (2010) Remote Sens. , vol.2 , pp. 833-860
    • Meng, X.1    Currit, N.2    Zhao, K.3
  • 19
    • 80155175662 scopus 로고    scopus 로고
    • Parameter-free ground filtering of LiDAR data for automatic DTM generation
    • Mongus D., Žalik B. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS J. Photogram. Rem. Sens. 2012, 67:1-12.
    • (2012) ISPRS J. Photogram. Rem. Sens. , vol.67 , pp. 1-12
    • Mongus, D.1    Žalik, B.2
  • 20
    • 74149091927 scopus 로고    scopus 로고
    • Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar
    • Müller J., Stadler J., Brandl R. Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. Remote Sens. Environ. 2010, 114:490-495.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 490-495
    • Müller, J.1    Stadler, J.2    Brandl, R.3
  • 22
    • 77953527645 scopus 로고    scopus 로고
    • Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data
    • Nord-Larsen T., Riis-Nielsen T. Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data. Scand. J. For. Res. 2010, 25:262-272.
    • (2010) Scand. J. For. Res. , vol.25 , pp. 262-272
    • Nord-Larsen, T.1    Riis-Nielsen, T.2
  • 24
    • 84873023814 scopus 로고    scopus 로고
    • An improved simple morphological filter for the terrain classification of airborne LIDAR data
    • Pingel T.J., Clarke K.C., McBride W.A. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogram. Rem. Sens. 2013, 77:21-30.
    • (2013) ISPRS J. Photogram. Rem. Sens. , vol.77 , pp. 21-30
    • Pingel, T.J.1    Clarke, K.C.2    McBride, W.A.3
  • 25
    • 33749125021 scopus 로고    scopus 로고
    • A multi-resolution approach for filtering LiDAR altimetry data
    • Silván-Cárdenas J., Wang L. A multi-resolution approach for filtering LiDAR altimetry data. ISPRS J. Photogram. Rem. Sens. 2006, 61:11-22.
    • (2006) ISPRS J. Photogram. Rem. Sens. , vol.61 , pp. 11-22
    • Silván-Cárdenas, J.1    Wang, L.2
  • 27
    • 3342949547 scopus 로고    scopus 로고
    • Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds
    • Sithole G., Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogram. Rem. Sens. 2004, 59:85-101.
    • (2004) ISPRS J. Photogram. Rem. Sens. , vol.59 , pp. 85-101
    • Sithole, G.1    Vosselman, G.2
  • 30
    • 84865035806 scopus 로고    scopus 로고
    • Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation
    • Susaki J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model (DTM) generation. Remote Sens. 2012, 4:1804-1819.
    • (2012) Remote Sens. , vol.4 , pp. 1804-1819
    • Susaki, J.1
  • 32
    • 85045132678 scopus 로고    scopus 로고
    • Slope based filtering of laser altimetry data
    • Vosselman G. Slope based filtering of laser altimetry data. Int. Arch. Photogram. Remote Sens. 2000, 33:935-942.
    • (2000) Int. Arch. Photogram. Remote Sens. , vol.33 , pp. 935-942
    • Vosselman, G.1
  • 35
    • 84877826008 scopus 로고    scopus 로고
    • Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification
    • Zhang J., Lin X. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS J. Photogram. Rem. Sens. 2013, 81:44-59.
    • (2013) ISPRS J. Photogram. Rem. Sens. , vol.81 , pp. 44-59
    • Zhang, J.1    Lin, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.