메뉴 건너뛰기




Volumn , Issue , 2015, Pages 591-600

Beyond doctors: Future health prediction from multimedia and multimodal observations

Author keywords

Adaptive Multimodal Multi Task Learning; Chronic Diseases; Disease Progression; Multimodal Analysis

Indexed keywords

FACTORIZATION; HEALTH; LEARNING SYSTEMS; LINEAR SYSTEMS; MODAL ANALYSIS; NEURODEGENERATIVE DISEASES;

EID: 84962700055     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2733373.2806217     Document Type: Conference Paper
Times cited : (120)

References (35)
  • 1
    • 84962810093 scopus 로고    scopus 로고
    • Daily stress recognition from mobile phone data, weather conditions and individual traits
    • A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, and A. S. Pentland. Daily stress recognition from mobile phone data, weather conditions and individual traits. In ACM MM, 2014.
    • (2014) ACM MM
    • Bogomolov, A.1    Lepri, B.2    Ferron, M.3    Pianesi, F.4    Pentland, A.S.5
  • 2
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-Term conversion to ad: Results from adni
    • Y. F. C. Misra and C. Davatzikos. Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-Term conversion to ad: results from adni. NeuroImage, 2009.
    • (2009) NeuroImage
    • Misra, Y.F.C.1    Davatzikos, C.2
  • 3
    • 84962916352 scopus 로고    scopus 로고
    • Using emotional context from article for contextual music recommendation
    • C.-M. Chen, M.-F. Tsai, J.-Y. Liu, and Y.-H. Yang. Using emotional context from article for contextual music recommendation. In ACM MM, 2013.
    • (2013) ACM MM
    • Chen, C.-M.1    Tsai, M.-F.2    Liu, J.-Y.3    Yang, Y.-H.4
  • 4
    • 84962797718 scopus 로고    scopus 로고
    • What videos are similar with you?: Learning a common attributed representation for video recommendation
    • P. Cui, Z. Wang, and Z. Su. What videos are similar with you?: Learning a common attributed representation for video recommendation. In ACM MM, 2014.
    • (2014) ACM MM
    • Cui, P.1    Wang, Z.2    Su, Z.3
  • 6
    • 67651020812 scopus 로고    scopus 로고
    • Relating one-year cognitive change in mild cognitive impairment to baseline mri features
    • S. Duchesne, A. Caroli, C. Geroldi, D. Collins, and G. Frisoni. Relating one-year cognitive change in mild cognitive impairment to baseline mri features. NeuroImage, 2009.
    • (2009) NeuroImage
    • Duchesne, S.1    Caroli, A.2    Geroldi, C.3    Collins, D.4    Frisoni, G.5
  • 9
    • 80053436238 scopus 로고    scopus 로고
    • A graph-based framework for multi-Task multi-view learning
    • J. He and R. Lawrence. A graph-based framework for multi-Task multi-view learning. In ICML, 2011.
    • (2011) ICML
    • He, J.1    Lawrence, R.2
  • 11
    • 84962916373 scopus 로고    scopus 로고
    • Shared structure learning for multiple tasks with multiple views
    • X. Jin, F. Zhuang, S. Wang, Q. He, and Z. Shi. Shared structure learning for multiple tasks with multiple views. In MLKDD. 2013.
    • (2013) MLKDD
    • Jin, X.1    Zhuang, F.2    Wang, S.3    He, Q.4    Shi, Z.5
  • 12
    • 0037293284 scopus 로고    scopus 로고
    • Neuroimaging and early diagnosis of Alzheimer disease: A look to the future
    • P. JR C. RE D. PM
    • P. JR, C. RE, and D. PM. Neuroimaging and early diagnosis of alzheimer disease: A look to the future. Radiology, 2003.
    • (2003) Radiology
  • 13
    • 84871385000 scopus 로고    scopus 로고
    • Image annotation using multi-correlation probabilistic matrix factorization
    • Z. Li, J. Liu, X. Zhu, T. Liu, and H. Lu. Image annotation using multi-correlation probabilistic matrix factorization. In ACM MM, 2010.
    • (2010) ACM MM
    • Li, Z.1    Liu, J.2    Zhu, X.3    Liu, T.4    Lu, H.5
  • 14
    • 84962899000 scopus 로고    scopus 로고
    • User-level psychological stress detection from social media using deep neural network
    • H. Lin, J. Jia, Q. Guo, Y. Xue, Q. Li, J. Huang, L. Cai, and L. Feng. User-level psychological stress detection from social media using deep neural network. In ACM MM, 2014.
    • (2014) ACM MM
    • Lin, H.1    Jia, J.2    Guo, Q.3    Xue, Y.4    Li, Q.5    Huang, J.6    Cai, L.7    Feng, L.8
  • 15
    • 84866678558 scopus 로고    scopus 로고
    • Exploiting the entire feature space with sparsity for automatic image annotation
    • Z. Ma, Y. Yang, F. Nie, J. Uijlings, and N. Sebe. Exploiting the entire feature space with sparsity for automatic image annotation. In ACM MM, 2011.
    • (2011) ACM MM
    • Ma, Z.1    Yang, Y.2    Nie, F.3    Uijlings, J.4    Sebe, N.5
  • 16
    • 84910071841 scopus 로고    scopus 로고
    • A joint local-global approach for medical terminology assignment
    • L. Nie, M. Akbari, T. Li, and T.-S. Chua. A joint local-global approach for medical terminology assignment. In SIGIR, MIR Workshop, 2014.
    • (2014) SIGIR, MIR Workshop
    • Nie, L.1    Akbari, M.2    Li, T.3    Chua, T.-S.4
  • 17
    • 84904553592 scopus 로고    scopus 로고
    • Wenzher: Comprehensive vertical search for healthcare domain
    • L. Nie, T. Li, M. Akbari, J. Shen, and T.-S. Chua. Wenzher: Comprehensive vertical search for healthcare domain. In SIGIR, 2014.
    • (2014) SIGIR
    • Nie, L.1    Li, T.2    Akbari, M.3    Shen, J.4    Chua, T.-S.5
  • 18
    • 84863771833 scopus 로고    scopus 로고
    • Oracle in image search: A content-based approach to performance prediction
    • L. Nie, M. Wang, Z.-J. Zha, and T.-S. Chua. Oracle in image search: A content-based approach to performance prediction. TOIS, 2012.
    • (2012) TOIS
    • Nie, L.1    Wang, M.2    Zha, Z.-J.3    Chua, T.-S.4
  • 19
    • 84936934560 scopus 로고    scopus 로고
    • Disease inference from health-related questions via sparse deep learning
    • L. Nie, M. Wang, L. Zhang, S. Yan, B. Zhang, and T.-S. Chua. Disease inference from health-related questions via sparse deep learning. TKDE, 2015.
    • (2015) TKDE
    • Nie, L.1    Wang, M.2    Zhang, L.3    Yan, S.4    Zhang, B.5    Chua, T.-S.6
  • 20
    • 84962873585 scopus 로고    scopus 로고
    • Harvesting visual concepts for image search with complex queries
    • L. Nie, S. Yan, M. Wang, R. Hong, and T.-S. Chua. Harvesting visual concepts for image search with complex queries. In ACM MM, 2012.
    • (2012) ACM MM
    • Nie, L.1    Yan, S.2    Wang, M.3    Hong, R.4    Chua, T.-S.5
  • 21
    • 84920134020 scopus 로고    scopus 로고
    • Bridging the vocabulary gap between health seekers and healthcare knowledge
    • L. Nie, Y.-L. Zhao, M. Akbari, J. Shen, and T.-S. Chua. Bridging the vocabulary gap between health seekers and healthcare knowledge. TKDE, 2015.
    • (2015) TKDE
    • Nie, L.1    Zhao, Y.-L.2    Akbari, M.3    Shen, J.4    Chua, T.-S.5
  • 22
    • 32344441349 scopus 로고    scopus 로고
    • Disease progression modeling from historical clinical databases
    • R. K. Pearson, R. J. Kingan, and A. Hochberg. Disease progression modeling from historical clinical databases. In SIGKDD, 2005.
    • (2005) SIGKDD
    • Pearson, R.K.1    Kingan, R.J.2    Hochberg, A.3
  • 23
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • and the Alzheimer Disease Neuroimaging Initiative
    • C. Stonnington, C. Chu, S. Klöppel, C. Jack, J. Ashburner, R. Frackowiak, and the Alzheimer Disease Neuroimaging Initiative. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage, 2010.
    • (2010) NeuroImage
    • Stonnington, C.1    Chu, C.2    Klöppel, S.3    Jack, C.4    Ashburner, J.5    Frackowiak, R.6
  • 25
    • 84991665233 scopus 로고    scopus 로고
    • Multi-source learning with block-wise missing data for Alzheimer's disease prediction
    • S. Xiang, L. Yuan, W. Fan, Y. Wang, P. M. Thompson, and J. Ye. Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In SIGKDD, 2013.
    • (2013) SIGKDD
    • Xiang, S.1    Yuan, L.2    Fan, W.3    Wang, Y.4    Thompson, P.M.5    Ye, J.6
  • 26
    • 84906510384 scopus 로고    scopus 로고
    • Online crowdsourcing subjective image quality assessment
    • Q. Xu, Q. Huang, and Y. Yao. Online crowdsourcing subjective image quality assessment. In ACM MM, 2012.
    • (2012) ACM MM
    • Xu, Q.1    Huang, Q.2    Yao, Y.3
  • 27
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • X. Yang, S. Kim, and E. P. Xing. Heterogeneous multitask learning with joint sparsity constraints. In NIPS, 2009.
    • (2009) NIPS
    • Yang, X.1    Kim, S.2    Xing, E.P.3
  • 29
    • 84862273137 scopus 로고    scopus 로고
    • Multi-Task learning using generalized t process
    • Z. Yu and D.-Y. Yeung. Multi-Task learning using generalized t process. JMLR, 2010.
    • (2010) JMLR
    • Yu, Z.1    Yeung, D.-Y.2
  • 30
    • 84866042961 scopus 로고    scopus 로고
    • Multi-source learning for joint analysis of incomplete multi-modality neuroimaging data
    • L. Yuan, Y. Wang, P. M. Thompson, V. A. Narayan, and J. Ye. Multi-source learning for joint analysis of incomplete multi-modality neuroimaging data. In SIGKDD, 2012.
    • (2012) SIGKDD
    • Yuan, L.1    Wang, Y.2    Thompson, P.M.3    Narayan, V.A.4    Ye, J.5
  • 31
    • 84897722287 scopus 로고    scopus 로고
    • Multi-modal multi-Task learning for joint prediction of clinical scores in Alzheimer's disease
    • D. Zhang and D. Shen. Multi-modal multi-Task learning for joint prediction of clinical scores in Alzheimer's disease. In Multimodal Brain Image Analysis. 2011.
    • (2011) Multimodal Brain Image Analysis
    • Zhang, D.1    Shen, D.2
  • 32
    • 84866049136 scopus 로고    scopus 로고
    • Inductive multi-Task learning with multiple view data
    • J. Zhang and J. Huan. Inductive multi-Task learning with multiple view data. In SIGKDD, 2012.
    • (2012) SIGKDD
    • Zhang, J.1    Huan, J.2
  • 33
    • 84962823769 scopus 로고    scopus 로고
    • Integrating rich information for video recommendation with multi-Task rank aggregation
    • X. Zhao, G. Li, M. Wang, J. Yuan, Z.-J. Zha, Z. Li, and T.-S. Chua. Integrating rich information for video recommendation with multi-Task rank aggregation. In ACM MM, 2011.
    • (2011) ACM MM
    • Zhao, X.1    Li, G.2    Wang, M.3    Yuan, J.4    Zha, Z.-J.5    Li, Z.6    Chua, T.-S.7
  • 34
    • 84866037290 scopus 로고    scopus 로고
    • Modeling disease progression via fused sparse group lasso
    • J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling disease progression via fused sparse group lasso. In SIGKDD, 2012.
    • (2012) SIGKDD
    • Zhou, J.1    Liu, J.2    Narayan, V.A.3    Ye, J.4
  • 35
    • 80052666240 scopus 로고    scopus 로고
    • A multi-Task learning formulation for predicting disease progression
    • J. Zhou, L. Yuan, J. Liu, and J. Ye. A multi-Task learning formulation for predicting disease progression. In SIGKDD, 2011.
    • (2011) SIGKDD
    • Zhou, J.1    Yuan, L.2    Liu, J.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.