메뉴 건너뛰기




Volumn 2, Issue 1, 2014, Pages 602-609

Random forests: From early developments to recent advancements

Author keywords

Bagging; Ensemble learning; Random forests; Supervised learning

Indexed keywords

DECISION TREES; SUPERVISED LEARNING;

EID: 84962466332     PISSN: None     EISSN: 21642583     Source Type: Journal    
DOI: 10.1080/21642583.2014.956265     Document Type: Article
Times cited : (475)

References (43)
  • 1
    • 84877619779 scopus 로고    scopus 로고
    • Accuracy and diversity in ensembles of text categorisers
    • Adeva, J. J. G., Beresi, U., & Calvo, R. (2005). Accuracy and diversity in ensembles of text categorisers. CLEI Electronic Journal, 9(1), 1–12.
    • (2005) CLEI Electronic Journal , vol.9 , Issue.1 , pp. 1-12
    • Adeva, J.J.G.1    Beresi, U.2    Calvo, R.3
  • 3
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9(7), 1545–1588.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L. (1996b). Stacked regressions. Machine Learning, 24(1), 49–64.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6(1), 5–20.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 14
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139–157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37.
    • (1996) AI Magazine , vol.17 , Issue.3 , pp. 37
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 16
    • 80052390407 scopus 로고    scopus 로고
    • Random forests for verbal autopsy analysis: Multisite validation study using clinical diagnostic gold standards
    • Flaxman, A. D., Vahdatpour, A., Green, S., James, S. L., & Murray, C. J. L. (2011). Random forests for verbal autopsy analysis: Multisite validation study using clinical diagnostic gold standards. Population Health Metrics, 9(29), 1–11.
    • (2011) Population Health Metrics , vol.9 , Issue.29 , pp. 1-11
    • Flaxman, A.D.1    Vahdatpour, A.2    Green, S.3    James, S.L.4    Murray, C.J.L.5
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 67650431890 scopus 로고    scopus 로고
    • Random forest algorithm for classification of multiwavelength data
    • Gao, D., Zhang, Y.-X., & Zhao, Y.-H. (2009). Random forest algorithm for classification of multiwavelength data. Research in Astronomy and Astrophysics, 9(2), 14–39.
    • (2009) Research in Astronomy and Astrophysics , vol.9 , Issue.2 , pp. 14-39
    • Gao, D.1    Zhang, Y.-X.2    Zhao, Y.-H.3
  • 23
    • 85028078145 scopus 로고    scopus 로고
    • Identifying predictive markers of chemosensitivity of breast cancer with random forests
    • Hu, W. (2009). Identifying predictive markers of chemosensitivity of breast cancer with random forests. Cancer, 13, 59–64.
    • (2009) Cancer , vol.13 , pp. 59-64
    • Hu, W.1
  • 25
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181–207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 26
  • 28
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. RNews, 2(3), 18–22.
    • (2002) Rnews , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 29
    • 84875681835 scopus 로고    scopus 로고
    • Per-fieldcropclassificationinirrigatedagri-cultural regions in Middle Asia using random forest and support vector machine ensemble
    • Bellingham, WA: International Society for Optics and Photonics
    • Löw, F., Schorcht, G., Michel, U., Dech, S., & Conrad, C. (2012, September 24). Per-fieldcropclassificationinirrigatedagri-cultural regions in Middle Asia using random forest and support vector machine ensemble. In SPIE remote sensing, Edinburgh, United Kingdom (pp. 85380R–85380R). Bellingham, WA: International Society for Optics and Photonics.
    • (2012) SPIE Remote Sensing, Edinburgh, United Kingdom , pp. 85380R
    • Löw, F.1    Schorcht, G.2    Michel, U.3    Dech, S.4    Conrad, C.5
  • 30
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–45.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 33
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39.
    • (2010) Artificial Intelligence Review , vol.33 , Issue.12 , pp. 1-39
    • Rokach, L.1
  • 37
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • Smyth, P., & Wolpert, D. (1999). Linearly combining density estimators via stacking. Machine Learning, 36(1–2), 59–83.
    • (1999) Machine Learning , vol.36 , Issue.12 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 38
    • 85028053128 scopus 로고    scopus 로고
    • When majority voting fails: Comparing quality assurance methods for noisy human computation environment
    • Retrieved from arXiv:1204.3516
    • Sun, Y.-A., & Dance, C. (2012). When majority voting fails: Comparing quality assurance methods for noisy human computation environment. CoRR. Retrieved from arXiv:1204.3516.
    • (2012) Corr
    • Sun, Y.-A.1    Dance, C.2
  • 40
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.