-
1
-
-
84877619779
-
Accuracy and diversity in ensembles of text categorisers
-
Adeva, J. J. G., Beresi, U., & Calvo, R. (2005). Accuracy and diversity in ensembles of text categorisers. CLEI Electronic Journal, 9(1), 1–12.
-
(2005)
CLEI Electronic Journal
, vol.9
, Issue.1
, pp. 1-12
-
-
Adeva, J.J.G.1
Beresi, U.2
Calvo, R.3
-
2
-
-
51749102692
-
Enriched random forests
-
Amaratunga, D., Cabrera, J., & Lee, Y.-S. (2008). Enriched random forests. Bioinformatics, 24(18), 2010–2014.
-
(2008)
Bioinformatics
, vol.24
, Issue.18
, pp. 2010-2014
-
-
Amaratunga, D.1
Cabrera, J.2
Lee, Y.-S.3
-
3
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
Amit Y., & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9(7), 1545–1588.
-
(1997)
Neural Computation
, vol.9
, Issue.7
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
4
-
-
84869061905
-
Garf: Towards self-optimised random forests
-
T. Huang, Z. Zeng, C. Li, & C.-S. Leung (Eds.), Berlin: Springer
-
Bader-El-Den, M., & Gaber, M. (2012, November 12–15). Garf: Towards self-optimised random forests. In T. Huang, Z. Zeng, C. Li, & C.-S. Leung (Eds.), Neural Information Processing – 19th International Conference, ICONIP 2012, Doha, Qatar, Proceedings, Part II, Lecture Notes in Computer Science (pp. 506–515). Berlin: Springer.
-
(2012)
Neural Information Processing – 19Th International Conference, ICONIP 2012, Doha, Qatar, Proceedings, Part II, Lecture Notes in Computer Science
, pp. 506-515
-
-
Bader-El-Den, M.1
Gaber, M.2
-
5
-
-
77956995748
-
A study of strength and correlation in random forests
-
D.-S. Huang, T. Martin McGinnity, L. Heutte, & X.-P. Zhang (Eds.), Berlin: Springer
-
Bernard, S., Heutte, L., & Adam, S. (2010, August 18–21). A study of strength and correlation in random forests. In D.-S. Huang, T. Martin McGinnity, L. Heutte, & X.-P. Zhang (Eds.), Advanced Intelligent Computing Theories and Applications – 6th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, Proceedings, Communications in Computer and Information Science (pp. 186–191). Berlin: Springer.
-
(2010)
Advanced Intelligent Computing Theories and Applications – 6Th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, Proceedings, Communications in Computer and Information Science
, pp. 186-191
-
-
Bernard, S.1
Heutte, L.2
Adam, S.3
-
6
-
-
51149107238
-
Meta random forests
-
Boinee, P., De Angelis, A., & Foresti, G. L. (2005). Meta random forests. International Journal of Computational Intelligence, 2(3), 138–147.
-
(2005)
International Journal of Computational Intelligence
, vol.2
, Issue.3
, pp. 138-147
-
-
Boinee, P.1
De Angelis, A.2
Foresti, G.L.3
-
7
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493–507.
-
(2012)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.2
, Issue.6
, pp. 493-507
-
-
Boulesteix, A.-L.1
Janitza, S.2
Kruppa, J.3
König, I.R.4
-
8
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
0030196364
-
Stacked regressions
-
Breiman, L. (1996b). Stacked regressions. Machine Learning, 24(1), 49–64.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
10
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
0003802343
-
-
(1st ed.). New York/Boca Raton, FL: Chapman and Hall/CRC
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees (1st ed.). New York/Boca Raton, FL: Chapman and Hall/CRC.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
12
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: A survey and categorisation. Information Fusion, 6(1), 5–20.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
13
-
-
38449114584
-
Random forests for classification in ecology
-
Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.
-
(2007)
Ecology
, vol.88
, Issue.11
, pp. 2783-2792
-
-
Cutler, D.R.1
Edwards, T.C.2
Beard, K.H.3
Cutler, A.4
Hess, K.T.5
Gibson, J.6
Lawler, J.J.7
-
14
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139–157.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
15
-
-
0002283033
-
From data mining to knowledge discovery in databases
-
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37.
-
(1996)
AI Magazine
, vol.17
, Issue.3
, pp. 37
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
16
-
-
80052390407
-
Random forests for verbal autopsy analysis: Multisite validation study using clinical diagnostic gold standards
-
Flaxman, A. D., Vahdatpour, A., Green, S., James, S. L., & Murray, C. J. L. (2011). Random forests for verbal autopsy analysis: Multisite validation study using clinical diagnostic gold standards. Population Health Metrics, 9(29), 1–11.
-
(2011)
Population Health Metrics
, vol.9
, Issue.29
, pp. 1-11
-
-
Flaxman, A.D.1
Vahdatpour, A.2
Green, S.3
James, S.L.4
Murray, C.J.L.5
-
17
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
18
-
-
67650431890
-
Random forest algorithm for classification of multiwavelength data
-
Gao, D., Zhang, Y.-X., & Zhao, Y.-H. (2009). Random forest algorithm for classification of multiwavelength data. Research in Astronomy and Astrophysics, 9(2), 14–39.
-
(2009)
Research in Astronomy and Astrophysics
, vol.9
, Issue.2
, pp. 14-39
-
-
Gao, D.1
Zhang, Y.-X.2
Zhao, Y.-H.3
-
21
-
-
85057943047
-
Random decision forests
-
Montreal, Quebec, Canada, New York City, NY: IEEE
-
Ho, T. K. (1995). Random decision forests. In Document analysis and recognition, 1995, Proceedings of the third international conference, Montreal, Quebec, Canada (Vol. 1, pp. 278–282). New York City, NY: IEEE.
-
(1995)
Document Analysis and Recognition, 1995, Proceedings of the Third International Conference
, vol.1
, pp. 278-282
-
-
Ho, T.K.1
-
23
-
-
85028078145
-
Identifying predictive markers of chemosensitivity of breast cancer with random forests
-
Hu, W. (2009). Identifying predictive markers of chemosensitivity of breast cancer with random forests. Cancer, 13, 59–64.
-
(2009)
Cancer
, vol.13
, pp. 59-64
-
-
Hu, W.1
-
24
-
-
84883444193
-
Investigation of random forest performance with cancer microarray data
-
T. Philip (Ed.), Cary, NC: International Society for Computers and Their Applications
-
Klassen, M., Cummings, M., & Saldana, G. (2008, April 9– 11). Investigation of random forest performance with cancer microarray data. In T. Philip (Ed.), Proceedings of the ISCA 23rd International Conference on Computers and Their Applications, CATA 2008, Cancun, Mexico (pp. 64–69). Cary, NC: International Society for Computers and Their Applications.
-
(2008)
Proceedings of the ISCA 23Rd International Conference on Computers and Their Applications, CATA 2008, Cancun, Mexico
, pp. 64-69
-
-
Klassen, M.1
Cummings, M.2
Saldana, G.3
-
25
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181–207.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
26
-
-
0031238275
-
Application of majority voting to pattern recognition: An analysis of its behavior and performance
-
Lam, L., & Suen, C. Y. (1997). Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 27(5), 553–568.
-
(1997)
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Suen, C.Y.2
-
27
-
-
84956999131
-
Limiting the number of trees in random forests
-
J. Kittler & F. Roli (Eds.), Berlin: Springer
-
Latinne, P., Debeir, O., & Decaestecker, C. (2001, July 2–4). Limiting the number of trees in random forests. In J. Kittler & F. Roli (Eds.), Multiple Classifier Systems, Second International Workshop, MCS 2001 Cambridge, UK, Lecture Notes in Computer Science (pp. 178–187). Berlin: Springer.
-
(2001)
Multiple Classifier Systems, Second International Workshop, MCS 2001 Cambridge, UK, Lecture Notes in Computer Science
, pp. 178-187
-
-
Latinne, P.1
Debeir, O.2
Decaestecker, C.3
-
28
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. RNews, 2(3), 18–22.
-
(2002)
Rnews
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
29
-
-
84875681835
-
Per-fieldcropclassificationinirrigatedagri-cultural regions in Middle Asia using random forest and support vector machine ensemble
-
Bellingham, WA: International Society for Optics and Photonics
-
Löw, F., Schorcht, G., Michel, U., Dech, S., & Conrad, C. (2012, September 24). Per-fieldcropclassificationinirrigatedagri-cultural regions in Middle Asia using random forest and support vector machine ensemble. In SPIE remote sensing, Edinburgh, United Kingdom (pp. 85380R–85380R). Bellingham, WA: International Society for Optics and Photonics.
-
(2012)
SPIE Remote Sensing, Edinburgh, United Kingdom
, pp. 85380R
-
-
Löw, F.1
Schorcht, G.2
Michel, U.3
Dech, S.4
Conrad, C.5
-
30
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–45.
-
(2006)
IEEE Circuits and Systems Magazine
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
32
-
-
22944453097
-
Improving random forests
-
J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Berlin: Springer
-
Robnik-Šikonja, M. (2004, September 20–24). Improving random forests. In J.-F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Machine Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa, Italy, 2004 Proceedings, Lecture Notes in Computer Science (pp. 359–370). Berlin: Springer.
-
(2004)
Machine Learning: ECML 2004, 15Th European Conference on Machine Learning, Pisa, Italy, 2004 Proceedings, Lecture Notes in Computer Science
, pp. 359-370
-
-
Robnik-Šikonja, M.1
-
33
-
-
75149176174
-
Ensemble-based classifiers
-
Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39.
-
(2010)
Artificial Intelligence Review
, vol.33
, Issue.12
, pp. 1-39
-
-
Rokach, L.1
-
34
-
-
77953178544
-
On-line random forests
-
New York City, NY: IEEE
-
Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (2009). On-line random forests. In 2009 IEEE 12th international conference on computer vision workshops (ICCV workshops), Kyoto, Japan (pp. 1393–1400). New York City, NY: IEEE.
-
(2009)
2009 IEEE 12Th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan
, pp. 1393-1400
-
-
Saffari, A.1
Leistner, C.2
Santner, J.3
Godec, M.4
Bischof, H.5
-
35
-
-
84869403967
-
Veto-based malware detection
-
New York City, NY: IEEE
-
Shahzad, R. K., & Lavesson, N. (2012). Veto-based malware detection. In 2012 seventh international conference on availability, reliability and security (ARES), Prague, Czech Republic (pp. 47–54). New York City, NY: IEEE.
-
(2012)
2012 Seventh International Conference on Availability, Reliability and Security (ARES), Prague, Czech Republic
, pp. 47-54
-
-
Shahzad, R.K.1
Lavesson, N.2
-
36
-
-
84886870981
-
Comparative analysis of voting schemes for ensemble-based malware detection
-
Shahzad, R. K., & Lavesson, N. (2013). Comparative analysis of voting schemes for ensemble-based malware detection. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 4(1), 98–117.
-
(2013)
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
, vol.4
, Issue.1
, pp. 98-117
-
-
Shahzad, R.K.1
Lavesson, N.2
-
37
-
-
0032661851
-
Linearly combining density estimators via stacking
-
Smyth, P., & Wolpert, D. (1999). Linearly combining density estimators via stacking. Machine Learning, 36(1–2), 59–83.
-
(1999)
Machine Learning
, vol.36
, Issue.12
, pp. 59-83
-
-
Smyth, P.1
Wolpert, D.2
-
38
-
-
85028053128
-
When majority voting fails: Comparing quality assurance methods for noisy human computation environment
-
Retrieved from arXiv:1204.3516
-
Sun, Y.-A., & Dance, C. (2012). When majority voting fails: Comparing quality assurance methods for noisy human computation environment. CoRR. Retrieved from arXiv:1204.3516.
-
(2012)
Corr
-
-
Sun, Y.-A.1
Dance, C.2
-
39
-
-
33750306177
-
Dynamic integration with random forests
-
J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Berlin: Springer
-
Tsymbal, A., Pechenizkiy, M., & Cunningham, P. (2006, September 18–22). Dynamic integration with random forests. In J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, 2006 Proceedings, Lecture Notes in Computer Science (pp. 801–808). Berlin: Springer.
-
(2006)
Machine Learning: ECML 2006, 17Th European Conference on Machine Learning, Berlin, Germany, 2006 Proceedings, Lecture Notes in Computer Science
, pp. 801-808
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
40
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
41
-
-
84866622935
-
Hybrid weighted random forests for classifying very high-dimensional data
-
Xu, B., Huang, J. Z., Williams, G., & Ye, Y. (2012). Hybrid weighted random forests for classifying very high-dimensional data. International Journal of Data Warehousing and Mining, 8(2), 44–63.
-
(2012)
International Journal of Data Warehousing and Mining
, vol.8
, Issue.2
, pp. 44-63
-
-
Xu, B.1
Huang, J.Z.2
Williams, G.3
Ye, Y.4
-
42
-
-
3843132929
-
Designing classifier ensembles with constrained performance requirements
-
B. V. Dasarathy (Ed.), Bellingham, WA: SPIE
-
Yan, W., & Goebel, K. F. (2004). Designing classifier ensembles with constrained performance requirements. In B. V. Dasarathy (Ed.), Proceedings of the SPIE 5434, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2004, Orlando, FL (pp. 59–68). Bellingham, WA: SPIE.
-
(2004)
Proceedings of the SPIE 5434, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2004, Orlando, FL
, pp. 59-68
-
-
Yan, W.1
Goebel, K.F.2
-
43
-
-
80054753994
-
Traffic sign classification using kd trees and random forests
-
New York City, NY: IEEE
-
Zaklouta, F., Stanciulescu, B., & Hamdoun, O. (2011). Traffic sign classification using kd trees and random forests. In The 2011 international joint conference on neural networks (IJCNN), San Jose, CA, USA (pp. 2151–2155). New York City, NY: IEEE.
-
(2011)
The 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA
, pp. 2151-2155
-
-
Zaklouta, F.1
Stanciulescu, B.2
Hamdoun, O.3
|