메뉴 건너뛰기




Volumn , Issue , 2015, Pages 427-434

Bag-of-fragments: Selecting and encoding video fragments for event detection and recounting

Author keywords

Bag of fragments; Discriminative fragments; Event detection; Event recounting

Indexed keywords


EID: 84962449261     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2671188.2749404     Document Type: Conference Paper
Times cited : (60)

References (28)
  • 1
    • 84899732670 scopus 로고    scopus 로고
    • Minimally needed evidence for complex event recognition in unconstrained videos
    • S. Bhattacharya, F. X. Yu, and S.-F. Chang. Minimally needed evidence for complex event recognition in unconstrained videos. In ICMR, 2014.
    • (2014) ICMR
    • Bhattacharya, S.1    Yu, F.X.2    Chang, S.-F.3
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. ML, 20(3), 1995.
    • (1995) ML , vol.20 , Issue.3
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013.
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 7
    • 84900116262 scopus 로고    scopus 로고
    • Evaluation of color spatio-temporal interest points for human action recognition
    • I. Everts, J. C. van Gemert, and T. Gevers. Evaluation of color spatio-temporal interest points for human action recognition. TIP, 23(4), 2014.
    • (2014) TIP , vol.23 , Issue.4
    • Everts, I.1    Van Gemert, J.C.2    Gevers, T.3
  • 8
    • 84962389624 scopus 로고    scopus 로고
    • Videostory: A new multimedia embedding for few-example recognition and translation of events
    • A. Habibian, T. Mensink, and C. G. M. Snoek. Videostory: A new multimedia embedding for few-example recognition and translation of events. In ACM MM, 2014.
    • (2014) ACM MM
    • Habibian, A.1    Mensink, T.2    Snoek, C.G.M.3
  • 9
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012.
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 10
    • 85081111493 scopus 로고    scopus 로고
    • How good are detection proposals, really?
    • J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really? BMVC, 2014.
    • (2014) BMVC
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 13
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 16
    • 84899758534 scopus 로고    scopus 로고
    • Querying for video events by semantic signatures from few examples
    • M. Mazloom, A. Habibian, and C. G. M. Snoek. Querying for video events by semantic signatures from few examples. In ACM MM, 2013.
    • (2013) ACM MM
    • Mazloom, M.1    Habibian, A.2    Snoek, C.G.M.3
  • 17
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Co-occurrence statistics for zero-shot classification
    • T. Mensink, E. Gavves, and C. G. M. Snoek. Costa: Co-occurrence statistics for zero-shot classification. In CVPR, 2014.
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.M.3
  • 18
    • 84856141623 scopus 로고    scopus 로고
    • Semantic model vectors for complex video event recognition
    • M. Merler, B. Huang, L. Xie, G. Hua, and A. Natsev. Semantic model vectors for complex video event recognition. TMM, 14(1), 2012.
    • (2012) TMM , vol.14 , Issue.1
    • Merler, M.1    Huang, B.2    Xie, L.3    Hua, G.4    Natsev, A.5
  • 20
    • 85077311325 scopus 로고    scopus 로고
    • Trecvid 2014 - An overview of the goals, tasks, data, evaluation mechanisms and metrics
    • P. Over et al. Trecvid 2014 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In TRECVID Workshop, 2014.
    • (2014) TRECVID Workshop
    • Over, P.1
  • 21
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in large margin classifiers, 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 23
    • 84911429593 scopus 로고    scopus 로고
    • Discover: Discovering important segments for classification of video events and recounting
    • C. Sun and R. Nevatia. Discover: Discovering important segments for classification of video events and recounting. In CVPR, 2014.
    • (2014) CVPR
    • Sun, C.1    Nevatia, R.2
  • 25
    • 84898817119 scopus 로고    scopus 로고
    • Compositional models for video event detection: A multiple kernel learning latent variable approach
    • A. Vahdat, K. Cannons, G. Mori, S. Oh, and I. Kim. Compositional models for video event detection: A multiple kernel learning latent variable approach. In ICCV, 2013.
    • (2013) ICCV
    • Vahdat, A.1    Cannons, K.2    Mori, G.3    Oh, S.4    Kim, I.5
  • 26
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 28
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.