메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages

Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHENE; GRAPHENE OXIDE; LITHIUM ION; SILICON; SILICON OXYCARBIDE GLASS GRAPHENE; UNCLASSIFIED DRUG;

EID: 84962406652     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms10998     Document Type: Article
Times cited : (289)

References (60)
  • 1
    • 84906706577 scopus 로고    scopus 로고
    • Chemically integrated two-dimensional hybrid zinc manganate/ graphene nanosheets with enhanced lithium storage capability
    • Xiong, P. et al. Chemically integrated two-dimensional hybrid zinc manganate/ graphene nanosheets with enhanced lithium storage capability. ACS Nano 8, 8610-8616 (2014).
    • (2014) ACS Nano , vol.8 , pp. 8610-8616
    • Xiong, P.1
  • 2
    • 84906654005 scopus 로고    scopus 로고
    • Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries
    • Ko, M., Chae, S., Jeong, S., Oh, P. & Cho, J. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 8, 8591-8599 (2014).
    • (2014) ACS Nano , vol.8 , pp. 8591-8599
    • Ko, M.1    Chae, S.2    Jeong, S.3    Oh, P.4    Cho, J.5
  • 3
    • 84926644629 scopus 로고    scopus 로고
    • Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode
    • David, L., Bhandavat, R., Barrera, U. & Singh, G. Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci. Rep 5, 9792 (2015).
    • (2015) Sci. Rep , vol.5 , pp. 9792
    • David, L.1    Bhandavat, R.2    Barrera, U.3    Singh, G.4
  • 4
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini, R., Varzi, A., Passerini, S. & Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271-279 (2015).
    • (2015) Nat. Mater , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3    Scrosati, B.4
  • 5
    • 84861862467 scopus 로고    scopus 로고
    • Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes
    • Bhandavat, R., David, L. & Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3, 1523-1530 (2012).
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 1523-1530
    • Bhandavat, R.1    David, L.2    Singh, G.3
  • 6
    • 79952978292 scopus 로고    scopus 로고
    • Materials challenges and opportunities of lithium ion batteries
    • Manthiram, A. Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176-184 (2011).
    • (2011) J. Phys. Chem. Lett , vol.2 , pp. 176-184
    • Manthiram, A.1
  • 7
    • 77955536058 scopus 로고    scopus 로고
    • Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries
    • Cui, L.-F., Hu, L., Choi, J. W. & Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 4, 3671-3678 (2010).
    • (2010) ACS Nano , vol.4 , pp. 3671-3678
    • Cui, L.-F.1    Hu, L.2    Choi, J.W.3    Cui, Y.4
  • 8
    • 84863629371 scopus 로고    scopus 로고
    • Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes
    • Luo, J. Y. et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824-1829 (2012).
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 1824-1829
    • Luo, J.Y.1
  • 9
    • 84895920205 scopus 로고    scopus 로고
    • A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes
    • Liu, N. et al. A pomegranate-inspired nanoscale design for large-volumechange lithium battery anodes. Nat. Nanotechnol 9, 187-192 (2014).
    • (2014) Nat. Nanotechnol , vol.9 , pp. 187-192
    • Liu, N.1
  • 10
    • 84856957712 scopus 로고    scopus 로고
    • Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
    • Hwang, T. H., Lee, Y. M., Kong, B. S., Seo, J. S. & Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802-807 (2012).
    • (2012) Nano Lett , vol.12 , pp. 802-807
    • Hwang, T.H.1    Lee, Y.M.2    Kong, B.S.3    Seo, J.S.4    Choi, J.W.5
  • 11
    • 84899808244 scopus 로고    scopus 로고
    • Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries
    • Pan, L. et al. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 50, 5878-5880 (2014).
    • (2014) Chem. Commun , vol.50 , pp. 5878-5880
    • Pan, L.1
  • 12
    • 70349961704 scopus 로고    scopus 로고
    • Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries
    • Cui, L. F., Yang, Y., Hsu, C. M. & Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370-3374 (2009).
    • (2009) Nano Lett , vol.9 , pp. 3370-3374
    • Cui, L.F.1    Yang, Y.2    Hsu, C.M.3    Cui, Y.4
  • 13
    • 77953892395 scopus 로고    scopus 로고
    • Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space
    • Hertzberg, B., Alexeev, A. & Yushin, G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548-8549 (2010).
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 8548-8549
    • Hertzberg, B.1    Alexeev, A.2    Yushin, G.3
  • 14
    • 84874432208 scopus 로고    scopus 로고
    • Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes
    • Wang, B. et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7, 1437-1445 (2013).
    • (2013) ACS Nano , vol.7 , pp. 1437-1445
    • Wang, B.1
  • 15
    • 84868008050 scopus 로고    scopus 로고
    • Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials
    • Hu, T. et al. Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51, 322-326 (2013).
    • (2013) Carbon , vol.51 , pp. 322-326
    • Hu, T.1
  • 16
    • 84870516250 scopus 로고    scopus 로고
    • Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery
    • Liang, J., Zhao, Y., Guo, L. & Li, L. Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery. ACS Appl. Mater. Interfaces 4, 5742-5748 (2012).
    • (2012) ACS Appl. Mater. Interfaces , vol.4 , pp. 5742-5748
    • Liang, J.1    Zhao, Y.2    Guo, L.3    Li, L.4
  • 17
    • 84870457666 scopus 로고    scopus 로고
    • Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries
    • Jia, X. et al. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 6, 9911-9919 (2012).
    • (2012) ACS Nano , vol.6 , pp. 9911-9919
    • Jia, X.1
  • 18
    • 84155168969 scopus 로고    scopus 로고
    • Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries
    • Noerochim, L., Wang, J. Z., Chou, S. L., Wexler, D. & Liu, H. K. Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50, 1289-1297 (2012).
    • (2012) Carbon , vol.50 , pp. 1289-1297
    • Noerochim, L.1    Wang, J.Z.2    Chou, S.L.3    Wexler, D.4    Liu, H.K.5
  • 19
    • 84861935705 scopus 로고    scopus 로고
    • Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries
    • Chockla, A. M. et al. Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries. J. Phys. Chem. C 116, 11917-11923 (2012).
    • (2012) J. Phys. Chem. C , vol.116 , pp. 11917-11923
    • Chockla, A.M.1
  • 20
    • 84862983982 scopus 로고    scopus 로고
    • Enhanced reversible lithium storage in a nano- Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process
    • Yue, L., Zhong, H. & Zhang, L. Enhanced reversible lithium storage in a nano- Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process. Electrochim. Acta 76, 326-332 (2012).
    • (2012) Electrochim. Acta , vol.76 , pp. 326-332
    • Yue, L.1    Zhong, H.2    Zhang, L.3
  • 21
    • 84863714223 scopus 로고    scopus 로고
    • In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage
    • Chen, Z. et al. In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv. Eng. Mater. 2, 95-102 (2012).
    • (2012) Adv. Eng. Mater , vol.2 , pp. 95-102
    • Chen, Z.1
  • 22
    • 84863115825 scopus 로고    scopus 로고
    • Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells
    • Ji, L. et al. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 1, 164-171 (2012).
    • (2012) Nano Energy , vol.1 , pp. 164-171
    • Ji, L.1
  • 23
    • 79961023196 scopus 로고    scopus 로고
    • SnO2-graphenecarbon nanotube mixture for anode material with improved rate capacities
    • Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W. & Kim, J. K. SnO2-graphenecarbon nanotube mixture for anode material with improved rate capacities. Carbon 49, 4524-4534 (2011).
    • (2011) Carbon , vol.49 , pp. 4524-4534
    • Zhang, B.1    Zheng, Q.B.2    Huang, Z.D.3    Oh, S.W.4    Kim, J.K.5
  • 24
    • 79960985557 scopus 로고    scopus 로고
    • Fe3O4 Nanoparticle-integrated graphene sheets for highperformance half and full lithium ion cells
    • Ji, L. et al. Fe3O4 Nanoparticle-integrated graphene sheets for highperformance half and full lithium ion cells. Phys. Chem. Chem. Phys. 13, 7170-7177 (2011).
    • (2011) Phys. Chem. Chem. Phys , vol.13 , pp. 7170-7177
    • Ji, L.1
  • 25
    • 79961239580 scopus 로고    scopus 로고
    • Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries
    • Yu, A. et al. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2, 1855-1860 (2011).
    • (2011) J. Phys. Chem. Lett , vol.2 , pp. 1855-1860
    • Yu, A.1
  • 26
    • 80051684307 scopus 로고    scopus 로고
    • Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium
    • Xiao, J. et al. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv. Funct. Mater. 21, 2840-2846 (2011).
    • (2011) Adv. Funct. Mater , vol.21 , pp. 2840-2846
    • Xiao, J.1
  • 27
    • 77949356255 scopus 로고    scopus 로고
    • Silicon nanoparticlesgraphene paper composites for Li ion battery anodes
    • Lee, J. K., Smith, K. B., Hayner, C. M. & Kung, H. H. Silicon nanoparticlesgraphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025-2027 (2010).
    • (2010) Chem. Commun , vol.46 , pp. 2025-2027
    • Lee, J.K.1    Smith, K.B.2    Hayner, C.M.3    Kung, H.H.4
  • 28
    • 77957714684 scopus 로고    scopus 로고
    • Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries
    • Wang, H. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978-13980 (2010).
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 13978-13980
    • Wang, H.1
  • 29
    • 77955875714 scopus 로고    scopus 로고
    • Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
    • Wu, Z. S. et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187-3194 (2010).
    • (2010) ACS Nano , vol.4 , pp. 3187-3194
    • Wu, Z.S.1
  • 30
    • 78149422502 scopus 로고    scopus 로고
    • Fabrication of grapheneencapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage
    • Yang, S., Feng, X., Ivanovici, S. & Müllen, K. Fabrication of grapheneencapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49, 8408-8411 (2010).
    • (2010) Angew. Chem. Int. Ed , vol.49 , pp. 8408-8411
    • Yang, S.1    Feng, X.2    Ivanovici, S.3    Müllen, K.4
  • 31
    • 77950152488 scopus 로고    scopus 로고
    • Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage
    • Wang, D. et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587-1595 (2010).
    • (2010) ACS Nano , vol.4 , pp. 1587-1595
    • Wang, D.1
  • 32
    • 78049285796 scopus 로고    scopus 로고
    • Flexible free-standing graphene-silicon composite film for lithium-ion batteries
    • Wang, J. Z., Zhong, C., Chou, S. L. & Liu, H. K. Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochem. Commun. 12, 1467-1470 (2010).
    • (2010) Electrochem. Commun , vol.12 , pp. 1467-1470
    • Wang, J.Z.1    Zhong, C.2    Chou, S.L.3    Liu, H.K.4
  • 33
    • 77957061092 scopus 로고    scopus 로고
    • Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries
    • Zhou, G. et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22, 5306-5313 (2010).
    • (2010) Chem. Mater , vol.22 , pp. 5306-5313
    • Zhou, G.1
  • 34
    • 67049108048 scopus 로고    scopus 로고
    • Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion
    • Wang, D. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3, 907-914 (2009).
    • (2009) ACS Nano , vol.3 , pp. 907-914
    • Wang, D.1
  • 35
    • 61649099375 scopus 로고    scopus 로고
    • Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with threedimensionally delaminated flexible structure
    • Paek, S. M., Yoo, E. & Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with threedimensionally delaminated flexible structure. Nano Lett. 9, 72-75 (2008).
    • (2008) Nano Lett , vol.9 , pp. 72-75
    • Paek, S.M.1    Yoo, E.2    Honma, I.3
  • 36
    • 79959788043 scopus 로고    scopus 로고
    • Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application
    • Kumar, A. et al. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano 5, 4345-4349 (2011).
    • (2011) ACS Nano , vol.5 , pp. 4345-4349
    • Kumar, A.1
  • 37
    • 79960730143 scopus 로고    scopus 로고
    • Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries
    • Li, X. et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem. Commun. 13, 822-825 (2011).
    • (2011) Electrochem. Commun , vol.13 , pp. 822-825
    • Li, X.1
  • 38
    • 81855177540 scopus 로고    scopus 로고
    • Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications
    • Zhao, X., Hayner, C. M., Kung, M. C. & Kung, H. H. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5, 8739-8749 (2011).
    • (2011) ACS Nano , vol.5 , pp. 8739-8749
    • Zhao, X.1    Hayner, C.M.2    Kung, M.C.3    Kung, H.H.4
  • 39
    • 84949116922 scopus 로고    scopus 로고
    • Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability
    • David, L. & Singh, G. Reduced graphene oxide paper electrode: opposing effect of thermal annealing on Li and Na cyclability. J. Phys. Chem. C 118, 28401-28408 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 28401-28408
    • David, L.1    Singh, G.2
  • 40
    • 84867776785 scopus 로고    scopus 로고
    • Improved electrochemical capacity of precursorderived Si(B)CN-carbon nanotube composite as Li-ion battery anode
    • Bhandavat, R. & Singh, G. Improved electrochemical capacity of precursorderived Si(B)CN-carbon nanotube composite as Li-ion battery anode. ACS Appl. Mater. Interfaces 4, 5092-5097 (2012).
    • (2012) ACS Appl. Mater. Interfaces , vol.4 , pp. 5092-5097
    • Bhandavat, R.1    Singh, G.2
  • 41
    • 84879103426 scopus 로고    scopus 로고
    • Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites
    • Bhandavat, R. & Singh, G. Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites. J. Phys. Chem. C 117, 11899-11905 (2013).
    • (2013) J. Phys. Chem. C , vol.117 , pp. 11899-11905
    • Bhandavat, R.1    Singh, G.2
  • 42
    • 33745424289 scopus 로고    scopus 로고
    • A model for the nanodomains in polymer-derived SiCO
    • Saha, A., Raj, R. & Williamson, D. L. A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 2188-2195 (2006).
    • (2006) J. Am. Ceram. Soc , vol.89 , pp. 2188-2195
    • Saha, A.1    Raj, R.2    Williamson, D.L.3
  • 43
    • 77950504364 scopus 로고    scopus 로고
    • Lithium insertion in polymer-derived silicon oxycarbide ceramics
    • Sanchez-Jimenez, P. E. & Raj, R. Lithium insertion in polymer-derived silicon oxycarbide ceramics. J. Am. Ceram. Soc. 93, 1127-1135 (2010).
    • (2010) J. Am. Ceram. Soc , vol.93 , pp. 1127-1135
    • Sanchez-Jimenez, P.E.1    Raj, R.2
  • 44
    • 84889049180 scopus 로고    scopus 로고
    • Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods
    • Kaspar, J., Graczyk-Zajac, M. & Riedel, R. Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods. Electrochim. Acta 115, 665-670 (2014).
    • (2014) Electrochim. Acta , vol.115 , pp. 665-670
    • Kaspar, J.1    Graczyk-Zajac, M.2    Riedel, R.3
  • 45
    • 33846524906 scopus 로고    scopus 로고
    • Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery
    • Konno, H. et al. Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery. Carbon 45, 477-483 (2007).
    • (2007) Carbon , vol.45 , pp. 477-483
    • Konno, H.1
  • 46
    • 78649502262 scopus 로고    scopus 로고
    • Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium
    • Ahn, D. & Raj, R. Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. J. Power Sources 196, 2179-2186 (2011).
    • (2011) J. Power Sources , vol.196 , pp. 2179-2186
    • Ahn, D.1    Raj, R.2
  • 48
    • 84897618674 scopus 로고    scopus 로고
    • Preparation and improved electrochemical performance of SiCN-graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode
    • Feng, Y., Feng, N., Wei, Y. & Bai, Y. Preparation and improved electrochemical performance of SiCN-graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode. J. Mater. Chem. A 2, 4168-4177 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 4168-4177
    • Feng, Y.1    Feng, N.2    Wei, Y.3    Bai, Y.4
  • 49
    • 79956360933 scopus 로고    scopus 로고
    • Polymer-derived-SiCN ceramic/ graphite composite as anode material with enhanced rate capability for lithium ion batteries
    • Graczyk-Zajac, M., Fasel, C. & Riedel, R. Polymer-derived-SiCN ceramic/ graphite composite as anode material with enhanced rate capability for lithium ion batteries. J. Power Sources 196, 6412-6418 (2011).
    • (2011) J. Power Sources , vol.196 , pp. 6412-6418
    • Graczyk-Zajac, M.1    Fasel, C.2    Riedel, R.3
  • 50
    • 0031190735 scopus 로고    scopus 로고
    • Pyrolyzed polysiloxanes for use as anode materials in lithium- ion batteries
    • Xing, W., Wilson, A. M., Eguchi, K., Zank, G. & Dahn, J. R. Pyrolyzed polysiloxanes for use as anode materials in lithium- ion batteries. J. Electrochem. Soc. 144, 2410-2416 (1997).
    • (1997) J. Electrochem. Soc , vol.144 , pp. 2410-2416
    • Xing, W.1    Wilson, A.M.2    Eguchi, K.3    Zank, G.4    Dahn, J.R.5
  • 51
    • 78650092372 scopus 로고    scopus 로고
    • Improved synthesis of graphene oxide
    • Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806-4814 (2010).
    • (2010) ACS Nano , vol.4 , pp. 4806-4814
    • Marcano, D.C.1
  • 52
    • 19744372616 scopus 로고    scopus 로고
    • Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information
    • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. & Poschl, U. Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43, 1731-1742 (2005).
    • (2005) Carbon , vol.43 , pp. 1731-1742
    • Sadezky, A.1    Muckenhuber, H.2    Grothe, H.3    Niessner, R.4    Poschl, U.5
  • 53
    • 77249088216 scopus 로고    scopus 로고
    • Electrically conductive "alkylated" graphene paper via chemical reduction of amine-functionalized graphene oxide paper
    • Compton, O. C., Dikin, D. A., Putz, K. W., Brinson, L. C. & Nguyen, S. T. Electrically conductive "alkylated" graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22, 892-896 (2010).
    • (2010) Adv. Mater , vol.22 , pp. 892-896
    • Compton, O.C.1    Dikin, D.A.2    Putz, K.W.3    Brinson, L.C.4    Nguyen, S.T.5
  • 54
    • 77950240993 scopus 로고    scopus 로고
    • Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials
    • Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711-723 (2010).
    • (2010) Small , vol.6 , pp. 711-723
    • Compton, O.C.1    Nguyen, S.T.2
  • 55
    • 57049122772 scopus 로고    scopus 로고
    • Aqueous suspension and characterization of chemically modified graphene sheets
    • Park, S. et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592-6594 (2008).
    • (2008) Chem. Mater , vol.20 , pp. 6592-6594
    • Park, S.1
  • 56
    • 65249111782 scopus 로고    scopus 로고
    • Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents
    • Park, S. et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593-1597 (2009).
    • (2009) Nano Lett , vol.9 , pp. 1593-1597
    • Park, S.1
  • 57
    • 80052164561 scopus 로고    scopus 로고
    • Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies
    • Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009-17019 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 17009-17019
    • Ganguly, A.1    Sharma, S.2    Papakonstantinou, P.3    Hamilton, J.4
  • 58
    • 77954786288 scopus 로고    scopus 로고
    • The route to functional graphene oxide
    • Haubner, K. et al. The route to functional graphene oxide. ChemPhysChem 11, 2131-2139 (2010).
    • (2010) ChemPhysChem , vol.11 , pp. 2131-2139
    • Haubner, K.1
  • 59
    • 79955555293 scopus 로고    scopus 로고
    • Hydrazine-reduction of graphite- and graphene oxide
    • Park, S. et al. Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019-3023 (2011).
    • (2011) Carbon , vol.49 , pp. 3019-3023
    • Park, S.1
  • 60
    • 0030189809 scopus 로고    scopus 로고
    • Hysteresis during lithium insertion in hydrogen-containing carbons
    • Zheng, T., McKinnon, W. R. & Dahn, J. R. Hysteresis during lithium insertion in hydrogen-containing carbons. J. Electrochem. Soc. 143, 2137-2145 (1996).
    • (1996) J. Electrochem. Soc , vol.143 , pp. 2137-2145
    • Zheng, T.1    McKinnon, W.R.2    Dahn, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.