-
2
-
-
77953678696
-
Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
-
A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, and S. Ramaprabhu Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor Nanoscale 1 2009 382 386
-
(2009)
Nanoscale
, vol.1
, pp. 382-386
-
-
Kaniyoor, A.1
Imran Jafri, R.2
Arockiadoss, T.3
Ramaprabhu, S.4
-
3
-
-
84861848486
-
Flexible hydrogen sensors using graphene with palladium nanoparticle decoration
-
M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, and Y.H. Kim Flexible hydrogen sensors using graphene with palladium nanoparticle decoration Sens. Actuators B 169 2012 387 392
-
(2012)
Sens. Actuators B
, vol.169
, pp. 387-392
-
-
Chung, M.G.1
Kim, D.-H.2
Seo, D.K.3
Kim, T.4
Im, H.U.5
Lee, H.M.6
Yoo, J.-B.7
Hong, S.-H.8
Kang, T.J.9
Kim, Y.H.10
-
4
-
-
84885187000
-
A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape
-
T.-R. Rashid, D.-T. Phan, and G.-S. Chung A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape Sens. Actuators B 185 2013 777 784
-
(2013)
Sens. Actuators B
, vol.185
, pp. 777-784
-
-
Rashid, T.-R.1
Phan, D.-T.2
Chung, G.-S.3
-
5
-
-
84875164715
-
Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods
-
M. Kashif, M.E. Ali, S.M.U. Ali, U. Hashim, and S.B.A. Hamid Impact of hydrogen concentrations on the impedance spectroscopic behavior of Pd-sensitized ZnO nanorods Nano. Res. Lett. 8 2013 68 76
-
(2013)
Nano. Res. Lett.
, vol.8
, pp. 68-76
-
-
Kashif, M.1
Ali, M.E.2
Ali, S.M.U.3
Hashim, U.4
Hamid, S.B.A.5
-
6
-
-
79956363443
-
Vertically aligned ZnO nanorods and grapheme hybrid architectures for high-sensitive flexible gas sensors
-
J. Yi, J.M. Lee, and W.I.I. Park Vertically aligned ZnO nanorods and grapheme hybrid architectures for high-sensitive flexible gas sensors Sens. Actuators B 155 2011 264 269
-
(2011)
Sens. Actuators B
, vol.155
, pp. 264-269
-
-
Yi, J.1
Lee, J.M.2
Park, W.I.I.3
-
9
-
-
84856141402
-
A new route toward ultrasensitive, flexible chemical sensors: Metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates
-
M.A. Lim, D.H. Kim, C.-O. Park, Y.W. Lee, S.W. Han, Z. Li, R.S. Williams, and I. Park A new route toward ultrasensitive, flexible chemical sensors: Metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates ACS Nano 6 2012 598 608
-
(2012)
ACS Nano
, vol.6
, pp. 598-608
-
-
Lim, M.A.1
Kim, D.H.2
Park, C.-O.3
Lee, Y.W.4
Han, S.W.5
Li, Z.6
Williams, R.S.7
Park, I.8
-
10
-
-
84940054521
-
Wireless hydrogen smart sensor based on Pt/graphene-immobilized Radio-frequency identification Tag
-
J.S. Lee, J. Oh, J. Jun, and J. Jang Wireless hydrogen smart sensor based on Pt/graphene-immobilized Radio-frequency identification Tag ACS Nano 9 2015 7783 7790
-
(2015)
ACS Nano
, vol.9
, pp. 7783-7790
-
-
Lee, J.S.1
Oh, J.2
Jun, J.3
Jang, J.4
-
11
-
-
35348969886
-
High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles
-
Y. Sun, and H.H. Wang High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles Adv. Mater. 19 2007 2818 2823
-
(2007)
Adv. Mater.
, vol.19
, pp. 2818-2823
-
-
Sun, Y.1
Wang, H.H.2
-
12
-
-
84922777025
-
Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable Carbon nanotubes
-
D. Jung, M. Han, and G.S. Lee Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable Carbon nanotubes ACS Appl. Mater. Interfaces 7 2015 3050 3057
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 3050-3057
-
-
Jung, D.1
Han, M.2
Lee, G.S.3
-
13
-
-
84898604836
-
Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement
-
Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, and X. Xue Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement Nanoscale 6 2014 4604 4610
-
(2014)
Nanoscale
, vol.6
, pp. 4604-4610
-
-
Lin, Y.1
Deng, P.2
Nie, Y.3
Hu, Y.4
Xing, L.5
Zhang, Y.6
Xue, X.7
-
14
-
-
84894869163
-
Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature
-
Y. Zhao, X. Lai, P. Deng, Y. Nie, Y. Zhang, L. Xing, and X. Xue Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature Nanotechnology 25 2014 115502
-
(2014)
Nanotechnology
, vol.25
, pp. 115502
-
-
Zhao, Y.1
Lai, X.2
Deng, P.3
Nie, Y.4
Zhang, Y.5
Xing, L.6
Xue, X.7
-
15
-
-
84922737334
-
Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics
-
P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, and X. Xue Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics J. Mater. Chem. A 3 2015 3529 3535
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 3529-3535
-
-
Wang, P.1
Fu, Y.2
Yu, B.3
Zhao, Y.4
Xing, L.5
Xue, X.6
-
16
-
-
84890563701
-
Enhanced performance of a ZnO nanowire-based self-powered Glucose sensor by piezotronic effect
-
R. Yu, C. Pan, J. Chen, G. Zhu, and Z.L. Wang Enhanced performance of a ZnO nanowire-based self-powered Glucose sensor by piezotronic effect Adv. Funct. Mater. 23 2013 5868 5874
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5868-5874
-
-
Yu, R.1
Pan, C.2
Chen, J.3
Zhu, G.4
Wang, Z.L.5
-
17
-
-
84906809226
-
Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator
-
B. Saravanakumar, S. Soyoon, and S.-J. Kim Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator ACS Appl. Mater. Interfaces 6 2014 13716 13723
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 13716-13723
-
-
Saravanakumar, B.1
Soyoon, S.2
Kim, S.-J.3
-
18
-
-
84877773537
-
Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor
-
X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, and Z.L. Wang Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor Nanotechnology 24 2013 225501
-
(2013)
Nanotechnology
, vol.24
, pp. 225501
-
-
Xue, X.1
Nie, Y.2
He, B.3
Xing, L.4
Zhang, Y.5
Wang, Z.L.6
-
20
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Z.L. Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors ACS Nano 7 2013 9533 9557
-
(2013)
ACS Nano
, vol.7
, pp. 9533-9557
-
-
Wang, Z.L.1
-
21
-
-
84883710227
-
Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol
-
H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C.P. Wong, Y. Bando, and Z.L. Wang Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol Nano Energy 2 2013 693 701
-
(2013)
Nano Energy
, vol.2
, pp. 693-701
-
-
Zhang, H.1
Yang, Y.2
Su, Y.3
Chen, J.4
Hu, C.5
Wu, Z.6
Liu, Y.7
Wong, C.P.8
Bando, Y.9
Wang, Z.L.10
-
23
-
-
84877711037
-
A self-powered triboelectric nanosensor for mercury ion detection
-
Z.-H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, and Z.L. Wang A self-powered triboelectric nanosensor for mercury ion detection Angew. Chem. Int. Ed. 52 2013 5065 5069
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 5065-5069
-
-
Lin, Z.-H.1
Zhu, G.2
Zhou, Y.S.3
Yang, Y.4
Bai, P.5
Chen, J.6
Wang, Z.L.7
-
24
-
-
84903477526
-
Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor
-
Z.-H. Lin, G. Cheng, W. Wu, K.C. Pradel, and Z.L. Wang Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor ACS Nano 8 2014 6440 6448
-
(2014)
ACS Nano
, vol.8
, pp. 6440-6448
-
-
Lin, Z.-H.1
Cheng, G.2
Wu, W.3
Pradel, K.C.4
Wang, Z.L.5
-
25
-
-
84900860461
-
Triboelectric nanogenerator as an active UV photodetector
-
Z.-H. Lin, G. Cheng, Y. Yang, Y.S. Zhou, S. Lee, and Z.L. Wang Triboelectric nanogenerator as an active UV photodetector Adv. Funct. Mater. 24 2014 2810 2816
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2810-2816
-
-
Lin, Z.-H.1
Cheng, G.2
Yang, Y.3
Zhou, Y.S.4
Lee, S.5
Wang, Z.L.6
-
26
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z.L. Wang Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films Nano Lett. 12 2012 3109 3114
-
(2012)
Nano Lett.
, vol.12
, pp. 3109-3114
-
-
Fan, F.-R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
27
-
-
84870879691
-
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
-
S. Wang, L. Lin, and Z.L. Wang Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics Nano Lett. 12 2012 6339 6346
-
(2012)
Nano Lett.
, vol.12
, pp. 6339-6346
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
29
-
-
84900854013
-
PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays
-
Y.H. Ko, G. Nagaraju, S.H. Lee, and J.S. Yu PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays ACS Appl. Mater. Interfaces 6 2014 6631 6637
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 6631-6637
-
-
Ko, Y.H.1
Nagaraju, G.2
Lee, S.H.3
Yu, J.S.4
-
30
-
-
84873676798
-
Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
-
G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z.L. Wang Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator Nano Lett. 13 2013 847 853
-
(2013)
Nano Lett.
, vol.13
, pp. 847-853
-
-
Zhu, G.1
Lin, Z.-H.2
Jing, Q.3
Bai, P.4
Pan, C.5
Yang, Y.6
Zhou, Y.7
Wang, Z.L.8
-
31
-
-
84884328432
-
Effect of humidity and pressure on the triboelectric nanogenerator
-
V. Nguyen, and R. Yang Effect of humidity and pressure on the triboelectric nanogenerator Nano Energy 2 2013 604 608
-
(2013)
Nano Energy
, vol.2
, pp. 604-608
-
-
Nguyen, V.1
Yang, R.2
-
32
-
-
84928027500
-
Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism
-
B. Yu, Y. Fu, P. Wang, Y. Zhao, L. Xing, and X. Xue Enhanced piezo-humidity sensing of a Cd-ZnO nanowire nanogenerator as a self-powered/active gas sensor by coupling the piezoelectric screening effect and dopant displacement mechanism Phys. Chem. Chem. Phys. 17 2015 10856 10860
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 10856-10860
-
-
Yu, B.1
Fu, Y.2
Wang, P.3
Zhao, Y.4
Xing, L.5
Xue, X.6
-
33
-
-
82955215465
-
Nanojunction effects in multiple ZnO nanowire gas sensor
-
R. Khan, H.-W. Ra, J.T. Kim, W.S. Jang, D. Sharma, and Y.H. Im Nanojunction effects in multiple ZnO nanowire gas sensor Sens. Actuators B 150 2010 389 393
-
(2010)
Sens. Actuators B
, vol.150
, pp. 389-393
-
-
Khan, R.1
Ra, H.-W.2
Kim, J.T.3
Jang, W.S.4
Sharma, D.5
Im, Y.H.6
-
34
-
-
84882787824
-
Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays
-
W.J. Park, K.J. Choi, M.H. Kim, B.H. Koo, J.-L. Lee, and J.M. Baik Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays ACS Appl. Mater. Interfaces 5 2013 6802 6807
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 6802-6807
-
-
Park, W.J.1
Choi, K.J.2
Kim, M.H.3
Koo, B.H.4
Lee, J.-L.5
Baik, J.M.6
-
35
-
-
84946497696
-
Development and progress in piezotronics
-
X. Wen, W. Wu, C. Pan, Y. Hu, Q. Yang, and Z.L. Wang Development and progress in piezotronics Nano Energy 14 2015 276 295
-
(2015)
Nano Energy
, vol.14
, pp. 276-295
-
-
Wen, X.1
Wu, W.2
Pan, C.3
Hu, Y.4
Yang, Q.5
Wang, Z.L.6
|