메뉴 건너뛰기




Volumn , Issue , 2014, Pages 183-188

Interactive dimensionality reduction for visual analytics

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; NEURAL NETWORKS; VISUALIZATION;

EID: 84962027627     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (8)
  • 3
    • 84880820335 scopus 로고    scopus 로고
    • Customizing computational methods for visual analytics with big data
    • Jaegul Choo and Haesun Park. Customizing computational methods for visual analytics with big data. Computer Graphics and Applications, IEEE, 33(4):22-28, 2013.
    • (2013) Computer Graphics and Applications, IEEE , vol.33 , Issue.4 , pp. 22-28
    • Choo, J.1    Park, H.2
  • 7
    • 77949507946 scopus 로고    scopus 로고
    • Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    • Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and Samuel Kaski. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. The Journal of Machine Learning Research, 11:451-490, 2010.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 451-490
    • Venna, J.1    Peltonen, J.2    Nybo, K.3    Aidos, H.4    Kaski, S.5
  • 8
    • 84875853602 scopus 로고    scopus 로고
    • Improving projection-based data analysis by feature space transformations
    • International Society for Optics and Photonics
    • Matthias Schaefer, Leishi Zhang, Tobias Schreck, Andrada Tatu, John A Lee, Michel Verleysen, and Daniel A Keim. Improving projection-based data analysis by feature space transformations. In IS&T/SPIE Electronic Imaging, pages 86540H-86540H. International Society for Optics and Photonics, 2013.
    • (2013) IS&T/SPIE Electronic Imaging , pp. 86540H-86540H
    • Schaefer, M.1    Zhang, L.2    Schreck, T.3    Tatu, A.4    Lee, J.A.5    Verleysen, M.6    Keim, D.A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.