메뉴 건너뛰기




Volumn , Issue , 2014, Pages 71-80

Byte The Bullet: Learning on Real-World Computing Architectures

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84961990665     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (52)
  • 3
    • 0344306756 scopus 로고
    • Tracking the flow of information
    • I. de Sola Pool. Tracking the flow of information. Science, 221(4611):609-613, 1983.
    • (1983) Science , vol.221 , Issue.4611 , pp. 609-613
    • De Pool Sola, I.1
  • 4
    • 0345846607 scopus 로고
    • Saving all the bits
    • P. J. Denning. Saving all the bits. Americal Scientist, 78:402-405, 1990.
    • (1990) Americal Scientist , vol.78 , pp. 402-405
    • Denning, P.J.1
  • 6
    • 84945510035 scopus 로고    scopus 로고
    • Community cleverness required
    • Editorial. Community cleverness required. Nature, 2008.
    • (2008) Nature
    • Editorial1
  • 8
    • 0345327102 scopus 로고    scopus 로고
    • The digital earth: Understanding our planet in the 21st century
    • A. Gore. The digital earth: understanding our planet in the 21st century. Australian surveyor, 43(2):89-91, 1998.
    • (1998) Australian Surveyor , vol.43 , Issue.2 , pp. 89-91
    • Gore, A.1
  • 9
    • 84962011136 scopus 로고    scopus 로고
    • SQL Data Mining. History of Data Mining. http://www.sqldatamining.com/index.php/data-mining-basics/history-of-data-mining, 2012.
    • (2012) History of Data Mining
  • 16
    • 79956072588 scopus 로고    scopus 로고
    • Scalable SQL and noSQL data stores
    • R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record, 39(4):12-27, 2011.
    • (2011) ACM SIGMOD Record , vol.39 , Issue.4 , pp. 12-27
    • Cattell, R.1
  • 18
    • 84879087611 scopus 로고    scopus 로고
    • Big data's big unintended consequences
    • M. R. Wigan and R. Clarke. Big data's big unintended consequences. IEEE Computer, 46(6):46-53, 2013.
    • (2013) IEEE Computer , vol.46 , Issue.6 , pp. 46-53
    • Wigan, M.R.1    Clarke, R.2
  • 22
    • 72949108701 scopus 로고    scopus 로고
    • Mining our reality
    • T. Mitchell. Mining our reality. Science, 326:1644-1645, 2009.
    • (2009) Science , vol.326 , pp. 1644-1645
    • Mitchell, T.1
  • 25
    • 84962024556 scopus 로고    scopus 로고
    • Roundtable on online data collection
    • M. Kuneva. Roundtable on Online Data Collection, Targeting and Profiling - Keynote Speech. http://europa.eu/rapid/press-release-SPEECH-09-156-en.htm, 2009.
    • (2009) Targeting and Profiling - Keynote Speech
    • Kuneva, M.1
  • 30
    • 70350451895 scopus 로고    scopus 로고
    • Improving personalization solutions through optimal segmentation of customer bases
    • T. Jiang and A. Tuzhilin. Improving personalization solutions through optimal segmentation of customer bases. IEEE Transactions on Knowledge and Data Engineering, 21(3):305-320, 2009.
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , Issue.3 , pp. 305-320
    • Jiang, T.1    Tuzhilin, A.2
  • 31
    • 0034458530 scopus 로고    scopus 로고
    • Customer retention via data mining
    • K. Ng and H. Liu. Customer retention via data mining. Artificial Intelligence Review, 14(6):569-590, 2000.
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 569-590
    • Ng, K.1    Liu, H.2
  • 34
    • 85008013526 scopus 로고    scopus 로고
    • Data quality: A rising e-business concern
    • L. D. Paulson. Data quality: A rising e-business concern. IT Professional, 2(4):10-14, 2000.
    • (2000) IT Professional , vol.2 , Issue.4 , pp. 10-14
    • Paulson, L.D.1
  • 35
    • 56349085088 scopus 로고    scopus 로고
    • Using variable neighborhood search to improve the support vector machine performance in embedded automotive applications
    • E. Alba, D. Anguita, A. Ghio, and S. Ridella. Using variable neighborhood search to improve the support vector machine performance in embedded automotive applications. In IEEE International Joint Conference on Neural Networks, 2008.
    • (2008) IEEE International Joint Conference on Neural Networks
    • Alba, E.1    Anguita, D.2    Ghio, A.3    Ridella, S.4
  • 39
    • 55949086839 scopus 로고    scopus 로고
    • A support vector machine with integer parameters
    • D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella. A support vector machine with integer parameters. Neurocomputing, 72(1):480-489, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.1 , pp. 480-489
    • Anguita, D.1    Ghio, A.2    Pischiutta, S.3    Ridella, S.4
  • 42
    • 0242695744 scopus 로고    scopus 로고
    • A digital architecture for support vector machines: Theory, algorithm, and FPGA implementation
    • D. Anguita, A. Boni, and S. Ridella. A digital architecture for support vector machines: theory, algorithm, and fpga implementation. IEEE Transactions on Neural Networks, 14(5):993-1009, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.5 , pp. 993-1009
    • Anguita, D.1    Boni, A.2    Ridella, S.3
  • 47
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 52
    • 80052387251 scopus 로고    scopus 로고
    • Asynchronous peer-to-peer data mining with stochastic gradient descent
    • R. Ormándi, I. Heged′us, and M. Jelasity. Asynchronous peer-to-peer data mining with stochastic gradient descent. In Euro-Par 2011 Parallel Processing, pages 528-540, 2011.
    • (2011) Euro-Par 2011 Parallel Processing , pp. 528-540
    • Ormándi, R.1    Hegedus, I.2    Jelasity, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.