-
1
-
-
34748857895
-
-
Wiitala, K. W.; Cramer, C. J.; Hoye, T. R. Magn. Reson. Chem. 2007, 45, 819-829.
-
(2007)
Magn. Reson. Chem
, vol.45
, pp. 819-829
-
-
Wiitala, K.W.1
Cramer, C.J.2
Hoye, T.R.3
-
3
-
-
0034637577
-
-
Fekner, T.; Baldwin, J. E.; Adlington, R. M.; Jones, T. W.; Prout, C. K.; Schofield, C. J. Tetrahedron 2000, 56, 6053-6074.
-
(2000)
Tetrahedron
, vol.56
, pp. 6053-6074
-
-
Fekner, T.1
Baldwin, J.E.2
Adlington, R.M.3
Jones, T.W.4
Prout, C.K.5
Schofield, C.J.6
-
7
-
-
0028128673
-
-
Baldwin, J. E.; Chan, R. Y.; Sutherland, J. D. Tetrahedron Lett. 1994, 35, 5519-5522.
-
(1994)
Tetrahedron Lett
, vol.35
, pp. 5519-5522
-
-
Baldwin, J.E.1
Chan, R.Y.2
Sutherland, J.D.3
-
8
-
-
84962343102
-
-
E.g, twenty-seven thousand reactions appear from a Beilstein search of fused bicyclic β-lactam reactants
-
E.g., twenty-seven thousand reactions appear from a Beilstein search of fused bicyclic β-lactam reactants.
-
-
-
-
9
-
-
49649151746
-
-
For examples of other reactions initiated by intramolecular attack on the lactam carbonyl by a B-ring hydroxyl group (alcohol) see: (a) Gutowski, G. E, Daniels, C. M, Cooper, R. D. G. Tetrahedron Lett. 1971, 3429-3432
-
For examples of other reactions initiated by intramolecular attack on the lactam carbonyl by a B-ring hydroxyl group (alcohol) see: (a) Gutowski, G. E.; Daniels, C. M.; Cooper, R. D. G. Tetrahedron Lett. 1971, 3429-3432.
-
-
-
-
10
-
-
0023105711
-
-
(b) Baldwin, J. E.; Cobb, J. E.; Sheppard, L. N. Tetrahedron 1987, 43, 1003-1012.
-
(1987)
Tetrahedron
, vol.43
, pp. 1003-1012
-
-
Baldwin, J.E.1
Cobb, J.E.2
Sheppard, L.N.3
-
12
-
-
84962466366
-
-
R9 = 12.4 min); ESI/APCI mixed mode (neg ion) m/e 317 amu] data obtained for this material are consistent with its formulation as i, the C2-epimer of 9
-
R9 = 12.4 min); ESI/APCI mixed mode (neg ion) m/e 317 amu] data obtained for this material are consistent with its formulation as i, the C2-epimer of 9
-
-
-
-
13
-
-
84962417642
-
-
Chemical Equation Presented
-
(Chemical Equation Presented)
-
-
-
-
15
-
-
84873055189
-
-
Wiley: New York
-
Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; p 82.
-
(1986)
Ab Initio Molecular Orbital Theory
, pp. 82
-
-
Hehre, W.J.1
Radom, L.2
Schleyer, P.V.R.3
Pople, J.A.4
-
16
-
-
84946893847
-
-
Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129.
-
(1981)
Chem. Phys
, vol.55
, pp. 117-129
-
-
Miertus, S.1
Scrocco, E.2
Tomasi, J.3
-
18
-
-
84962438437
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T, Al-Laham
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2004.
-
-
-
-
19
-
-
84962401591
-
-
For the anionic reaction pathways for 5′ and 7′, reactant structures and TS structures corresponding to loss of carbon monoxide could be located, but no intermediate structures could be found. Attempts to generate, for example, intermediates associated with ring opening of the lactam following attack of the carboxylate on the amide carbonyl led smoothly back to reactants. Thus, lactam ring opening is computed to occur with concerted loss of carbon monoxide [e.g, see TS in brackets for 5′(anion) to 9′(anion, However, the computed activation free energies for the reactions of each of 5′ and 7′ are in excess of 45 kcal/mol, suggesting that the anionic reaction does not play a significant role in the observed decarbonylations, b) In the cases of neutral 5′ and 7′, bicyclic anhydrides formed by ring opening of the lactam together with proton transfer from the carboxylic acid to the 1,3
-
(a) For the anionic reaction pathways for 5′ and 7′, reactant structures and TS structures corresponding to loss of carbon monoxide could be located, but no intermediate structures could be found. Attempts to generate, for example, intermediates associated with ring opening of the lactam following attack of the carboxylate on the amide carbonyl led smoothly back to reactants. Thus, lactam ring opening is computed to occur with concerted loss of carbon monoxide [e.g., see TS in brackets for 5′(anion) to 9′(anion)] However, the computed activation free energies for the reactions of each of 5′ and 7′ are in excess of 45 kcal/mol, suggesting that the anionic reaction does not play a significant role in the observed decarbonylations. (b) In the cases of neutral 5′ and 7′, bicyclic anhydrides formed by ring opening of the lactam together with proton transfer from the carboxylic acid to the 1,3-thiazolidine were identified as stable intermediates having free energies of 4.2 and 18.4 kcal/mol relative to precursors 5′ and 7′, respectively. Decarbonylation TS structures that produce zwitterionic thiazolinium carboxylate products could be located. Again, however, the computed free energies of activation were too high to be experimentally relevant: 53.7 and 59.4 kcal/mol for 5′ and 7′, respectively.
-
-
-
-
20
-
-
84962438436
-
-
The zwitterionic (i.e, neutral) tetrahedral intermediate 10 formed from attack of the carboxylate anion on the O-protonated lactam carbonyl could be located as a minimum. However, when a proton was then added to the lactone carbonyl oxygen atom in 10, i.e, generating the same tetrahedral intermediate that would be created from attack of the neutral carboxylic acid on the O-protonated lactam, the resulting polycyclic structure reverts without barrier to 5′a again. Thus, the combination of strain and good leaving-group character of the -CO2H moiety prevents a pathway via 5′a from being a viable mechanistic alternative
-
2H moiety prevents a pathway via 5′a from being a viable mechanistic alternative.
-
-
-
-
21
-
-
0015523460
-
-
(a) Bell, M. R.; Carlson, J. A.; Oesterlin, R. J. Org. Chem. 1972, 37, 2733-2735.
-
(1972)
J. Org. Chem
, vol.37
, pp. 2733-2735
-
-
Bell, M.R.1
Carlson, J.A.2
Oesterlin, R.3
-
25
-
-
37049111333
-
-
Carlsen, L.; Egsgaard, H.; Jørgensen, F. S.; Nicolaisen, F. M. J. Chem. Soc., Perkin Trans. II 1984, 609-613.
-
(1984)
J. Chem. Soc., Perkin Trans. II
, pp. 609-613
-
-
Carlsen, L.1
Egsgaard, H.2
Jørgensen, F.S.3
Nicolaisen, F.M.4
|