메뉴 건너뛰기




Volumn , Issue , 2015, Pages 379-387

SourceSeer: Forecasting rare disease outbreaks using multiple data sources

Author keywords

[No Author keywords available]

Indexed keywords

ANOMALY DETECTION; DATA MINING; FORECASTING;

EID: 84961904287     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611974010.43     Document Type: Conference Paper
Times cited : (25)

References (29)
  • 2
    • 84871023469 scopus 로고    scopus 로고
    • The multiplicative weights update method: A meta-algorithm and applications
    • S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing, 8(1), 2012.
    • (2012) Theory of Computing , vol.8 , Issue.1
    • Arora, S.1    Hazan, E.2    Kale, S.3
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3, 2003.
    • (2003) JMLR , vol.3
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 5
    • 48749089377 scopus 로고    scopus 로고
    • Surveillance sans frontières: Internet-based emerging infectious disease intelligence and the healthmap project
    • J. S. Brownstein, C. C. Freifeld, B. Y. Reis, and K. D. Mandl. Surveillance Sans Frontières: Internet-Based Emerging Infectious Disease Intelligence and the HealthMap Project. PLoS Med., 5(7), 2008.
    • (2008) PLoS Med. , vol.5 , Issue.7
    • Brownstein, J.S.1    Freifeld, C.C.2    Reis, B.Y.3    Mandl, K.D.4
  • 6
    • 77949738013 scopus 로고    scopus 로고
    • Text and structural data mining of influenza mentions in web and social media
    • C. Corley, D. Cook, A. Mikler, and K. Singh. Text and structural data mining of influenza mentions in web and social media. UERPH, 1(2), 2010.
    • (2010) UERPH , vol.1 , Issue.2
    • Corley, C.1    Cook, D.2    Mikler, A.3    Singh, K.4
  • 7
    • 79956040653 scopus 로고    scopus 로고
    • Towards detecting influenza epidemics by analyzing twitter messages
    • A. Culotta. Towards detecting influenza epidemics by analyzing twitter messages. SOMA, 2010.
    • (2010) SOMA
    • Culotta, A.1
  • 8
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification and visualization of internet media reports
    • C. C. Freifeld, K. D. Mandl, B. Y Reis, and J. S. Brownstein. HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports. JAMIA, 15, 2008.
    • (2008) JAMIA , vol.15
    • Freifeld, C.C.1    Mandl, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 12
    • 84961923701 scopus 로고    scopus 로고
    • One-class classification: Taxonomy of study and review of techniques
    • abs/1312.0049
    • S. S. Khan and M. G. Madden. One-class classification: Taxonomy of study and review of techniques. CoRR, abs/1312.0049, 2013.
    • (2013) CoRR
    • Khan, S.S.1    Madden, M.G.2
  • 14
    • 85096855936 scopus 로고    scopus 로고
    • One-class svms for document classification
    • L. M. Manevitz and M. Yousef. One-class svms for document classification. JMLR, 2, 2002.
    • (2002) JMLR , vol.2
    • Manevitz, L.M.1    Yousef, M.2
  • 18
    • 80053392186 scopus 로고    scopus 로고
    • Labeled Ida: A supervised topic model for credit attribution in multi-labeled corpora
    • D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled Ida: A supervised topic model for credit attribution in multi-labeled corpora. EMNLP, 2009.
    • (2009) EMNLP
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.D.4
  • 20
    • 84888153069 scopus 로고    scopus 로고
    • An ensemble topic model for sharing healthcare data and predicting disease risk
    • A. K. Rider and N. V. Chawla. An ensemble topic model for sharing healthcare data and predicting disease risk. BCB, 2013.
    • (2013) BCB
    • Rider, A.K.1    Chawla, N.V.2
  • 21
    • 85029442782 scopus 로고    scopus 로고
    • Predicting disease transmission from geo-tagged micro-blog data
    • A. Sadilek, H. A. Kautz, and V. Silenzio. Predicting disease transmission from geo-tagged micro-blog data. AAAI, 2012.
    • (2012) AAAI
    • Sadilek, A.1    Kautz, H.A.2    Silenzio, V.3
  • 23
    • 21844462364 scopus 로고    scopus 로고
    • A classification framework for anomaly detection
    • I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection. JMLR, 6, 2005.
    • (2005) JMLR , vol.6
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 26
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-markov continuous-time model of topical trends
    • X. Wang and A. McCallum. Topics over time: A non-markov continuous-time model of topical trends. KDD, 2006.
    • (2006) KDD
    • Wang, X.1    McCallum, A.2
  • 27
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 1945.
    • (1945) Biometrics Bulletin , vol.1 , Issue.6
    • Wilcoxon, F.1
  • 28
    • 33745772641 scopus 로고    scopus 로고
    • Rule-based anomaly pattern detection for detecting disease outbreaks
    • W.-K. Wong, A. Moore, G. Cooper, and M. Wagner. Rule-based anomaly pattern detection for detecting disease outbreaks. AAAI, 2002.
    • (2002) AAAI
    • Wong, W.-K.1    Moore, A.2    Cooper, G.3    Wagner, M.4
  • 29
    • 1942484473 scopus 로고    scopus 로고
    • Bayesian network anomaly pattern detection for disease outbreaks
    • W.-K. Wong, A. Moore, G. Cooper, and M. Wagner. Bayesian network anomaly pattern detection for disease outbreaks. ICML, 2003.
    • (2003) ICML
    • Wong, W.-K.1    Moore, A.2    Cooper, G.3    Wagner, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.