-
1
-
-
84860443491
-
From databases to big data
-
May
-
S. Madden, "From databases to big data," IEEE Internet Comput., vol. 16, no. 3, pp. 4-6, May 2012.
-
(2012)
IEEE Internet Comput
, vol.16
, Issue.3
, pp. 4-6
-
-
Madden, S.1
-
2
-
-
84863610828
-
-
October [Online]. 19
-
P. Russom. (2011). Big data analytics," October [Online]. 19, p. 40. Available: http://faculty.ucmerced.edu/frusu/Papers/Conference/ 2012-sigmod-glade-demo.pdf
-
(2011)
Big Data Analytics
, pp. 40
-
-
Russom, P.1
-
3
-
-
84999744306
-
-
J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers, "Big data: The next frontier for innovation, competition, and productivity," McKinsey Global Inst., Jun. 2011, http:// www.mckinsey.com/insights/business-technology/big-data-the- next-frontier-for-innovation
-
-
-
-
4
-
-
84999659666
-
-
W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes. New York, NY, USA: Springer, 2011.
-
-
-
-
5
-
-
40249111624
-
Applying inductive logic programming to process mining
-
E. Lamma, P. Mello, F. Riguzzi, and S. Storari, "Applying inductive logic programming to process mining," in Proc. 17th Int. Conf. Inductive Logic Program., 2008, vol. 4894, pp. 132-146.
-
(2008)
Proc. 17th Int. Conf. Inductive Logic Program
, vol.4894
, pp. 132-146
-
-
Lamma, E.1
Mello, P.2
Riguzzi, F.3
Storari, S.4
-
6
-
-
70350255735
-
Exploiting inductive logic programming techniques for declarative process mining
-
F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari, "Exploiting inductive logic programming techniques for declarative process mining," Trans. Petri Nets Other Models Concurrency II, vol. 5460, pp. 278-295, 2009.
-
(2009)
Trans. Petri Nets Other Models Concurrency II
, vol.5460
, pp. 278-295
-
-
Chesani, F.1
Lamma, E.2
Mello, P.3
Montali, M.4
Riguzzi, F.5
Storari, S.6
-
10
-
-
2442617843
-
Issues in data stream management
-
Jun
-
L. Golab and M. T. Özsu, "Issues in data stream management," ACM SIGMOD Rec., vol. 32, no. 2, pp. 5-14, Jun. 2003.
-
(2003)
ACM SIGMOD Rec
, vol.32
, Issue.2
, pp. 5-14
-
-
Golab, L.1
Özsu, M.T.2
-
11
-
-
47949131563
-
Declare: Full support for loosely-structured processes
-
M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, "Declare: Full support for loosely-structured processes," in Proc. 11th IEEE Int. Enterprise Distrib. Object Comput. Conf., 2007, pp. 287-300.
-
(2007)
Proc. 11th IEEE Int. Enterprise Distrib. Object Comput. Conf
, pp. 287-300
-
-
Pesic, M.1
Schonenberg, H.2
Van Der Aalst, W.M.P.3
-
12
-
-
84886739521
-
Online process discovery to detect concept drifts in ltl-based declarative process models
-
Robert Meersman et.al.s, editor, volume 8185 of Lecture Notes in Computer Science, Springer
-
F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti, "Online process discovery to detect concept drifts in Ltl-based declarative process models," in Proc. Confederated Int. Conf., 2013, pp. 94-111.
-
(2013)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.8185
, pp. 94-111
-
-
Maggi, F.M.1
Burattin, A.2
Cimitile, M.3
Sperduti, A.4
-
13
-
-
84999769749
-
-
3TU Data Center, "BPI Challenge 2011 Event Log," 2011.
-
-
-
-
14
-
-
84999625208
-
-
C. W. Günther. (2009). XES Standard Definition [Online]. Available: www.xes-standard.org
-
-
-
-
15
-
-
36849095249
-
-
Boston, MA, USA: Springer
-
C. Aggarwal, Data Streams: Models and Algorithms, series Advances in Database Systems. Boston, MA, USA: Springer, 2007, vol. 31.
-
(2007)
Data Streams: Models and Algorithms, Series Advances in Database Systems
, vol.31
-
-
Aggarwal, C.1
-
16
-
-
77953527363
-
MOA: Massive online analysis learning examples
-
A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, "MOA: Massive online analysis learning examples," J. Mach. Learning Res., vol. 11, pp. 1601-1604, 2010.
-
(2010)
J. Mach. Learning Res
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
17
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learning, vol. 23, no. 1, pp. 69-101, 1996.
-
(1996)
Mach. Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
18
-
-
24344498330
-
Mining data streams: A review
-
Jun
-
M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, "Mining data streams: A review," ACM SIGMOD Rec., vol. 34, no. 2, pp. 18-26, Jun. 2005.
-
(2005)
ACM SIGMOD Rec
, vol.34
, Issue.2
, pp. 18-26
-
-
Gaber, M.M.1
Zaslavsky, A.2
Krishnaswamy, S.3
-
19
-
-
84999881932
-
-
J. A. Gama, Knowledge Discovery from Data Streams, series Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, vol. 20103856. Boca Raton, FL, USA: CRC Press, May 2010.
-
-
-
-
20
-
-
67349232819
-
Declarative workflows: Balancing between flexibility and support
-
W. van der Aalst, M. Pesic, and H. Schonenberg, "Declarative workflows: Balancing between flexibility and support," Comput. Sci.-Res. Develop., vol. 23, pp. 99-113, 2009.
-
(2009)
Comput. Sci.-Res. Develop
, vol.23
, pp. 99-113
-
-
Aalst Der WVan1
Pesic, M.2
Schonenberg, H.3
-
21
-
-
76249104125
-
Declarative specification and verification of service choreographies
-
M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello, and S. Storari, "Declarative specification and verification of service choreographies," ACMTrans. Web, vol. 4, no. 1, pp. 3:1-3:62, 2010.
-
(2010)
ACMTrans. Web
, vol.4
, Issue.1
, pp. 31-362
-
-
Montali, M.1
Pesic, M.2
Van Der Aalst, W.M.P.3
Chesani, F.4
Mello, P.5
Storari, S.6
-
23
-
-
84870666515
-
Techniques for a posteriori analysis of declarative processes
-
A. Burattin, F. Maggi, W. van der Aalst, and A. Sperduti, "Techniques for a posteriori analysis of declarative processes," in Proc. IEEE 16th It. Enterprise Distrib. Object Comput. Conf., 2012, pp. 41-50.
-
(2012)
Proc. IEEE 16th It. Enterprise Distrib. Object Comput. Conf
, pp. 41-50
-
-
Burattin, A.1
Maggi, F.2
Aalst Der WVan3
Sperduti, A.4
-
25
-
-
84896064017
-
A lossy counting based approach for learning on streams of graphs on a budget
-
G. Da San Martino, N. Navarin, and A. Sperduti, "A lossy counting based approach for learning on streams of graphs on a budget," in Proc. 23rd Int. Joint Conf. Artif. Intell., 2012, pp. 1294-1301.
-
(2012)
Proc. 23rd Int. Joint Conf. Artif. Intell
, pp. 1294-1301
-
-
Da San Martino, G.1
Navarin, N.2
Sperduti, A.3
-
26
-
-
84929893374
-
Lights, Camera, Action! Business process movies for online process discovery
-
A. Burattin, F. Maggi, and M. Cimitile, "Lights, Camera, Action! Business process movies for online process discovery," in Proc. 3rd Int. Workshop Theory Appl. Process Vis., 2014, pp. 408-419.
-
(2015)
Lecture Notes in Business Information Processing
, vol.202
, pp. 408-419
-
-
Burattin, A.1
Maggi, F.2
Cimitile, M.3
-
27
-
-
84961821700
-
-
A. Burattin, Artificial datasets for online declare discovery [Online]. Available: http://dx.doi.org/10.5281/zenodo.19187
-
-
-
-
28
-
-
84999620753
-
-
R. J. C. Bose, "Process mining in the large: Preprocessing, discovery, and diagnostics," PhD dissertation, Eindhoven Univ. Technol., Eindhoven, Netherlands, 2012.
-
-
-
-
29
-
-
77957009838
-
The need for a process mining evaluation framework in research and practice: Position paper
-
A. Rozinat, A. K. A. De Medeiros, C. W. Günther, A. J. M. M. Weijters, and W. M. P. Van Der Aalst, "The need for a process mining evaluation framework in research and practice: Position paper," in Proc. Int. Bus. Process Manag. Workshops, 2007, pp. 84-89.
-
(2007)
Proc. Int. Bus. Process Manag. Workshops
, pp. 84-89
-
-
Rozinat, A.1
De Medeiros, A.K.A.2
Günther, C.W.3
Weijters, A.J.M.M.4
Van Der Aalst, W.M.P.5
-
30
-
-
84999770062
-
-
A. Burattin, Process Mining Techniques in Business Environments. New York, NY, USA: Springer, 2015.
-
-
-
-
31
-
-
84890470685
-
Mining process models from workflow logs
-
R. Agrawal, D. Gunopulos, and F. Leymann, "Mining process models from workflow logs," in Proc. 6th Int. Conf. Extending Database Technol.: Adv. Database Technol., 1998, pp. 469-483.
-
(1998)
Proc. 6th Int. Conf. Extending Database Technol.: Adv. Database Technol
, pp. 469-483
-
-
Agrawal, R.1
Gunopulos, D.2
Leymann, F.3
-
32
-
-
84961808985
-
A knowledge-based integrated approach for discovering and repairing declare maps
-
F. Maggi, R. Bose, and W. van der Aalst, "A knowledge-based integrated approach for discovering and repairing declare maps," in Proc. 25th Int. Conf. Adv. Inf. Syst. Eng., 2013, pp. 443-448.
-
(2013)
Proc. 25th Int. Conf. Adv. Inf. Syst. Eng
, pp. 443-448
-
-
Maggi, F.1
Bose, R.2
Aalst Der WVan3
-
33
-
-
33745128690
-
Incremental workflow mining based on document versioning information
-
E. Kindler, V. Rubin, and W. Schäfer, "Incremental workflow mining based on document versioning information," in Proc. Int. Conf. Unifying Softw.Process Spectr., 2005, pp. 287-301.
-
(2005)
Proc. Int. Conf. Unifying Softw.Process Spectr
, pp. 287-301
-
-
Kindler, E.1
Rubin, V.2
Schäfer, W.3
-
34
-
-
84884344890
-
Incremental workflow mining for process flexibility
-
E. Kindler, V. Rubin, and W. Schafer, "Incremental workflow mining for process flexibility," in Proc. 7th CAiSE Workshop Bus. Process Model., Develop., Support, 2006, pp. 178-187.
-
(2006)
Proc. 7th CAiSE Workshop Bus. Process Model., Develop., Support
, pp. 178-187
-
-
Kindler, E.1
Rubin, V.2
Schafer, W.3
-
35
-
-
84999770016
-
-
A. Burattin, A. Sperduti, and W. M. P. van der Aalst, "Heuristics miners for streaming event data," ArXiv CoRR, Dec. 2012.
-
-
-
-
37
-
-
84999866057
-
-
A. Sharp and P. McDermott, Workflow Modeling: Tools for Process Improvement and Application Development, 2nd ed. Norwood, MA, USA: Artech House, 2008.
-
-
-
-
38
-
-
84872902578
-
Study of sampling techniques and algorithms in data stream environments
-
W. Hu and B. Zhang, "Study of sampling techniques and algorithms in data stream environments," in Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery, 2012, pp. 1028-1034.
-
(2012)
Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery
, pp. 1028-1034
-
-
Hu, W.1
Zhang, B.2
-
39
-
-
85012113183
-
Load shedding in a data stream manager
-
N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, "Load shedding in a data stream manager," in Proc. 29th Int. Conf. Very Large Data Bases, 2003, pp. 309-320.
-
(2003)
Proc. 29th Int. Conf. Very Large Data Bases
, pp. 309-320
-
-
Tatbul, N.1
Çetintemel, U.2
Zdonik, S.3
Cherniack, M.4
Stonebraker, M.5
-
40
-
-
2442576849
-
Approximate aggregation techniques for sensor databases
-
J. Considine, F. Li, G. Kollios, and J. Byers, "Approximate aggregation techniques for sensor databases," in Proc. 20th Int. Conf. Data Eng., 2004, pp. 449-460.
-
(2004)
Proc. 20th Int. Conf. Data Eng
, pp. 449-460
-
-
Considine, J.1
Li, F.2
Kollios, G.3
Byers, J.4
-
41
-
-
84891164329
-
Dealing with concept drifts in process mining
-
Jan
-
R. Bose, W. van der Aalst, I. Zliobaite, and M. Pechenizkiy, "Dealing with concept drifts in process mining," IEEE Trans. Neural Netw. Learning Syst., vol. 25, no. 1, pp. 154-171, Jan. 2014.
-
(2014)
IEEE Trans. Neural Netw. Learning Syst
, vol.25
, Issue.1
, pp. 154-171
-
-
Bose, R.1
Aalst Der WVan2
Zliobaite, I.3
Pechenizkiy, M.4
|