메뉴 건너뛰기




Volumn , Issue , 2008, Pages 5-12

Using data mining to predict secondary school student performance

Author keywords

Business intelligence in education; Classification and regression; Decision trees; Random forest

Indexed keywords

CONCURRENT ENGINEERING; DATA MINING; DECISION TREES; EDUCATION; EDUCATION COMPUTING; FORESTRY; INFORMATION ANALYSIS; POPULATION STATISTICS; SET THEORY;

EID: 84961731164     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (336)

References (15)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L., 2001. Random Forests. Machine Learning, 45, no. 1, 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 58049167225 scopus 로고    scopus 로고
    • Rminer: Data mining with neural networks and support vector machines using R
    • In press. In R. Rajesh (Ed.)
    • Cortez P., In press. RMiner: Data Mining with Neural Networks and Support Vector Machines using R. In R. Rajesh (Ed.), Introduction to Advanced Scientific Softwares and Toolboxes.
    • Introduction to Advanced Scientific Softwares and Toolboxes
    • Cortez, P.1
  • 4
    • 74049126661 scopus 로고    scopus 로고
    • Eurostat, 2007.Early school-leavers. http://epp.eurostat.ec.europa.eu/.
    • (2007) Early School-leavers
  • 5
    • 0012320945 scopus 로고    scopus 로고
    • Statistical evaluation of neural networks experiments: Minimum requirements and current practice
    • Vienna, Austria
    • Flexer A., 1996. Statistical Evaluation of Neural Networks Experiments: Minimum Requirements and Current Practice. In Proceedings of the 13th European Meeting on Cybernetics and Systems Research. Vienna, Austria, vol. 2, 1005-1008.
    • (1996) Proceedings of the 13th European Meeting on Cybernetics and Systems Research , vol.2 , pp. 1005-1008
    • Flexer, A.1
  • 7
    • 2942552288 scopus 로고    scopus 로고
    • Predicting students' performance in distance learning using machine learning techniques
    • Kotsiantis S.; Pierrakeas C.; and Pintelas P., 2004. Predicting Students' Performance in Distance Learning Using Machine Learning Techniques. Applied Artificial Intelligence (AAI), 18, no. 5, 411-426.
    • (2004) Applied Artificial Intelligence (AAI) , vol.18 , Issue.5 , pp. 411-426
    • Kotsiantis, S.1    Pierrakeas, C.2    Pintelas, P.3
  • 8
    • 14744274287 scopus 로고    scopus 로고
    • Data mining and its applications in higher education
    • Luan J., 2002. Data Mining and Its Applications in Higher Education. New Directions for Institutional Research, 113, 17-36.
    • (2002) New Directions for Institutional Research , vol.113 , pp. 17-36
    • Luan, J.1
  • 12
    • 0141865594 scopus 로고    scopus 로고
    • Using emotional and social factors to predict student success
    • Pritchard M. and Wilson S., 2003. Using Emotional and Social Factors To Predict Student Success. Journal of College Student Development, 44, no. 1, 18-28.
    • (2003) Journal of College Student Development , vol.44 , Issue.1 , pp. 18-28
    • Pritchard, M.1    Wilson, S.2
  • 13
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • Vienna, Austria R Development Core Team
    • R Development Core Team, 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3900051-00-3, http://www.R-project.org.
    • (2006) R Foundation for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.