-
1
-
-
54949139227
-
Materials for electrochemical capacitors
-
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
-
(2008)
Nat. Mater.
, vol.7
, Issue.11
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
2
-
-
77249086655
-
Advanced materials for energy storage
-
C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010). doi:10.1002/adma.200903328
-
(2010)
Adv. Mater.
, vol.22
, Issue.8
, pp. E28-E62
-
-
Liu, C.1
Li, F.2
Ma, L.P.3
Cheng, H.M.4
-
3
-
-
82955199345
-
A review of electrode materials for electrochemical supercapacitors
-
G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
-
(2012)
Chem. Soc. Rev.
, vol.41
, Issue.2
, pp. 797-828
-
-
Wang, G.P.1
Zhang, L.2
Zhang, J.J.3
-
4
-
-
66449099312
-
Printable thin film supercapacitors using single-walled carbon nanotubes
-
M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009). doi:10.1021/nl8038579
-
(2009)
Nano Lett.
, vol.9
, Issue.5
, pp. 1872-1876
-
-
Kaempgen, M.1
Chan, C.K.2
Ma, J.3
Cui, Y.4
Gruner, G.5
-
5
-
-
84862572712
-
An overview of the applications of graphene-based materials in supercapacitors
-
Y. Huang, J.J. Liang, Y.S. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012). doi:10.1002/smll.201102635
-
(2012)
Small
, vol.8
, Issue.12
, pp. 1805-1834
-
-
Huang, Y.1
Liang, J.J.2
Chen, Y.S.3
-
6
-
-
79955571237
-
2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials
-
2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). doi:10.1002/adma.201100058
-
(2011)
Adv. Mater.
, vol.23
, Issue.18
, pp. 2076-2081
-
-
Liu, J.P.1
Jiang, J.2
Cheng, C.W.3
Li, H.X.4
Zhang, J.X.5
Gong, H.6
Fan, H.J.7
-
7
-
-
84880152583
-
4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors
-
4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13(7), 3135–3139 (2013). doi:10.1021/nl401086t
-
(2013)
Nano Lett.
, vol.13
, Issue.7
, pp. 3135-3139
-
-
Huang, L.1
Chen, D.C.2
Ding, Y.3
Feng, S.4
Wang, Z.L.5
Liu, M.L.6
-
8
-
-
84923401776
-
Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications
-
S.J. Peng, L.L. Li, Y.X. Hu, M. Srinivasan, F.Y. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9(2), 1945–1954 (2015). doi:10.1021/nn506851x
-
(2015)
ACS Nano
, vol.9
, Issue.2
, pp. 1945-1954
-
-
Peng, S.J.1
Li, L.L.2
Hu, Y.X.3
Srinivasan, M.4
Cheng, F.Y.5
Chen, J.6
Ramakrishna, S.7
-
9
-
-
79957745159
-
Polyaniline-intercalated molybdenum oxide nanocomposites: simultaneous synthesis and their enhanced application for supercapacitor
-
L. Zheng, Y. Xu, D. Jin, Y. Xie, Polyaniline-intercalated molybdenum oxide nanocomposites: simultaneous synthesis and their enhanced application for supercapacitor. Chem. Asian J. 6(6), 1505–1514 (2011). doi:10.1002/asia.201000770
-
(2011)
Chem. Asian J.
, vol.6
, Issue.6
, pp. 1505-1514
-
-
Zheng, L.1
Xu, Y.2
Jin, D.3
Xie, Y.4
-
10
-
-
84900504174
-
Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability
-
T.Y. Liu, L. Finn, M.H. Yu, H.Y. Wang, T. Zhai, X.H. Lu, Y.X. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14(5), 2522–2527 (2014). doi:10.1021/nl500255v
-
(2014)
Nano Lett.
, vol.14
, Issue.5
, pp. 2522-2527
-
-
Liu, T.Y.1
Finn, L.2
Yu, M.H.3
Wang, H.Y.4
Zhai, T.5
Lu, X.H.6
Tong, Y.X.7
Li, Y.8
-
11
-
-
78650085858
-
Graphene-based supercapacitor with an ultrahigh energy density
-
C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). doi:10.1021/nl102661q
-
(2010)
Nano Lett.
, vol.10
, Issue.12
, pp. 4863-4868
-
-
Liu, C.G.1
Yu, Z.N.2
Neff, D.3
Zhamu, A.4
Jang, B.Z.5
-
12
-
-
84862839699
-
High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage
-
X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, C.D. Gu, X.B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q
-
(2012)
ACS Nano
, vol.6
, Issue.6
, pp. 5531-5538
-
-
Xia, X.H.1
Tu, J.P.2
Zhang, Y.Q.3
Wang, X.L.4
Gu, C.D.5
Zhao, X.B.6
Fan, H.J.7
-
13
-
-
77049117587
-
Graphene/polyaniline nanofiber composites as supercapacitor electrodes
-
K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010). doi:10.1021/cm902876u
-
(2010)
Chem. Mater.
, vol.22
, Issue.4
, pp. 1392-1401
-
-
Zhang, K.1
Zhang, L.L.2
Zhao, X.S.3
Wu, J.S.4
-
14
-
-
84896332785
-
A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations
-
X.H. Xia, D.L. Chao, Z.X. Fan, C. Guan, X.H. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 14(3), 1651–1658 (2014). doi:10.1021/nl5001778
-
(2014)
Nano Lett.
, vol.14
, Issue.3
, pp. 1651-1658
-
-
Xia, X.H.1
Chao, D.L.2
Fan, Z.X.3
Guan, C.4
Cao, X.H.5
Zhang, H.6
Fan, H.J.7
-
15
-
-
84900824377
-
MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors
-
F.R. Jiang, W.Y. Li, R.J. Zou, Q. Liu, K.B. Xu, L. An, J.Q. Hu, MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7, 72–79 (2014). doi:10.1016/j.nanoen.2014.04.007
-
(2014)
Nano Energy
, vol.7
, pp. 72-79
-
-
Jiang, F.R.1
Li, W.Y.2
Zou, R.J.3
Liu, Q.4
Xu, K.B.5
An, L.6
Hu, J.Q.7
-
16
-
-
85027917644
-
2 monolayers as high-performance supercapacitor electrodes
-
2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27(6), 1117–1123 (2015). doi:10.1002/adma.201404622
-
(2015)
Adv. Mater.
, vol.27
, Issue.6
, pp. 1117-1123
-
-
Tang, H.J.1
Wang, J.Y.2
Yin, H.J.3
Zhao, H.J.4
Wang, D.5
Tang, Z.Y.6
-
17
-
-
84893453577
-
Mixed transition-metal oxides: design, synthesis, and energy-related applications
-
C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). doi:10.1002/anie.201303971
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, Issue.6
, pp. 1488-1504
-
-
Yuan, C.Z.1
Wu, H.B.2
Xie, Y.3
Lou, X.W.4
-
18
-
-
84867062088
-
4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors
-
4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22(19), 4052–4059 (2012). doi:10.1002/adfm.201200519
-
(2012)
Adv. Funct. Mater.
, vol.22
, Issue.19
, pp. 4052-4059
-
-
Xiao, Y.H.1
Liu, S.J.2
Li, F.3
Zhang, A.Q.4
Zhao, J.H.5
Fang, S.M.6
Jia, D.Z.7
-
19
-
-
84861081528
-
Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance
-
R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12(5), 2559–2567 (2012). doi:10.1021/nl300779a
-
(2012)
Nano Lett.
, vol.12
, Issue.5
, pp. 2559-2567
-
-
Rakhi, R.B.1
Chen, W.2
Cha, D.3
Alshareef, H.N.4
-
20
-
-
84923412655
-
4 nanofilms with enhanced supercapacitor properties
-
4 nanofilms with enhanced supercapacitor properties. ACS Nano 9(2), 1730–1739 (2015). doi:10.1021/nn506548d
-
(2015)
ACS Nano
, vol.9
, Issue.2
, pp. 1730-1739
-
-
Feng, C.1
Zhang, J.F.2
He, Y.3
Zhong, C.4
Hu, W.B.5
Liu, L.6
Deng, Y.D.7
-
21
-
-
84949115415
-
4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
-
4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136(39), 13925–13931 (2014). doi:10.1021/ja5082553
-
(2014)
J. Am. Chem. Soc.
, vol.136
, Issue.39
, pp. 13925-13931
-
-
Ma, T.Y.1
Dai, S.2
Jaroniec, M.3
Qiao, S.Z.4
-
22
-
-
84940041560
-
4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor
-
4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor. J. Electrochem. Soc. 162(10), A1966–A1971 (2015). doi:10.1149/2.0041511jes
-
(2015)
J. Electrochem. Soc.
, vol.162
, Issue.10
, pp. A1966-A1971
-
-
Wang, X.W.1
Li, M.X.2
Chang, Z.3
Wang, Y.F.4
Chen, B.W.5
Zhang, L.X.6
Wu, Y.P.7
-
23
-
-
77956342501
-
Conducting-polymer-based supercapacitor devices and electrodes
-
G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011). doi:10.1016/j.jpowsour.2010.06.084
-
(2011)
J. Power Sources
, vol.196
, Issue.1
, pp. 1-12
-
-
Snook, G.A.1
Kao, P.2
Best, A.S.3
-
24
-
-
84877276310
-
Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor
-
C. Zhou, Y.W. Zhang, Y.Y. Li, J.P. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). doi:10.1021/nl400378j
-
(2013)
Nano Lett.
, vol.13
, Issue.5
, pp. 2078-2085
-
-
Zhou, C.1
Zhang, Y.W.2
Li, Y.Y.3
Liu, J.P.4
-
25
-
-
84922051724
-
4@Au-decorated PPy core/shell nanowire arrays: an efficient integration of active materials for energy storage
-
4@Au-decorated PPy core/shell nanowire arrays: an efficient integration of active materials for energy storage. J. Mater. Chem. A 3(6), 2535–2540 (2015). doi:10.1039/C4TA04707A
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.6
, pp. 2535-2540
-
-
Hong, W.1
Wang, J.Q.2
Li, Z.P.3
Yang, S.R.4
-
26
-
-
57249103618
-
Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance
-
G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 48, 6537–6539 (2008). doi:10.1039/b815647f
-
(2008)
Chem. Commun.
, vol.48
, pp. 6537-6539
-
-
Yang, G.W.1
Xu, C.L.2
Li, H.L.3
-
27
-
-
79959967086
-
4 nanowire arrays with high supercapacitor capacitance
-
4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21(25), 9319–9325 (2011). doi:10.1039/c1jm10946d
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.25
, pp. 9319-9325
-
-
Xia, X.H.1
Tu, J.P.2
Mai, Y.J.3
Wang, X.L.4
Gu, C.D.5
Zhao, X.B.6
-
28
-
-
84878262851
-
2@polypyrrole coaxial nanotubes as electrode material for supercapacitors
-
2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. J. Power Sources 241, 359–366 (2013). doi:10.1016/j.jpowsour.2013.04.142
-
(2013)
J. Power Sources
, vol.241
, pp. 359-366
-
-
Yao, W.1
Zhou, H.2
Lu, Y.3
-
29
-
-
84875831990
-
Core–shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries
-
J. Shao, X.Y. Li, L. Zhang, Q.T. Qu, H.H. Zheng, Core–shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. Nanoscale 5(4), 1460–1464 (2013). doi:10.1039/c2nr33590e
-
(2013)
Nanoscale
, vol.5
, Issue.4
, pp. 1460-1464
-
-
Shao, J.1
Li, X.Y.2
Zhang, L.3
Qu, Q.T.4
Zheng, H.H.5
-
30
-
-
79955481745
-
Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors
-
D.C. Zhang, X. Zhang, Y. Chen, P. Yu, C.H. Wang, Y.W. Ma, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J. Power Sources 196(14), 5990–5996 (2011). doi:10.1016/j.jpowsour.2011.02.090
-
(2011)
J. Power Sources
, vol.196
, Issue.14
, pp. 5990-5996
-
-
Zhang, D.C.1
Zhang, X.2
Chen, Y.3
Yu, P.4
Wang, C.H.5
Ma, Y.W.6
-
31
-
-
78649316351
-
In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites
-
S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51(25), 5921–5928 (2010). doi:10.1016/j.polymer.2010.10.014
-
(2010)
Polymer
, vol.51
, Issue.25
, pp. 5921-5928
-
-
Bose, S.1
Kuila, T.2
Uddin, M.E.3
Kim, N.H.4
Lau, A.K.T.5
Lee, J.H.6
-
32
-
-
6044246969
-
Initial stages of cobalt oxidation by FTIR spectroscopy
-
M. Lenglet, J. Lopitaux, L. Terrier, P. Chartier, J. Koenig, E. Nkeng, G. Poillerat, Initial stages of cobalt oxidation by FTIR spectroscopy. J. Phys. IV 03(C9), 477–483 (1993). doi:10.1051/jp4:1993951
-
(1993)
J. Phys. IV
, vol.3
, Issue.C9
, pp. 477-483
-
-
Lenglet, M.1
Lopitaux, J.2
Terrier, L.3
Chartier, P.4
Koenig, J.5
Nkeng, E.6
Poillerat, G.7
-
34
-
-
84900813157
-
2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage
-
2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 7, 42–51 (2014). doi:10.1016/j.nanoen.2014.04.014
-
(2014)
Nano Energy
, vol.7
, pp. 42-51
-
-
Han, L.J.1
Tang, P.Y.2
Zhang, L.3
-
35
-
-
84904757654
-
2 ternary core–shell composite
-
2 ternary core–shell composite. J. Mater. Chem. A 2(32), 12968–12973 (2014). doi:10.1039/C4TA02380C
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.32
, pp. 12968-12973
-
-
Wang, B.1
He, X.Y.2
Li, H.P.3
Liu, Q.4
Wang, J.5
Yu, L.6
Yan, H.J.7
Li, Z.S.8
Wang, P.9
-
36
-
-
84928964329
-
2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage
-
2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Adv. 5(50), 39864–39869 (2015). doi:10.1039/C5RA06765K
-
(2015)
RSC Adv.
, vol.5
, Issue.50
, pp. 39864-39869
-
-
Ma, W.Q.1
Shi, Q.Q.2
Nan, H.H.3
Hu, Q.Q.4
Zheng, X.T.5
Geng, B.Y.6
Zhang, X.J.7
-
37
-
-
84936875348
-
Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability
-
Y. Song, X. Cai, X.X. Xu, X.X. Liu, Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J. Mater. Chem. A 3(28), 14712–14720 (2015). doi:10.1039/C5TA02810H
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.28
, pp. 14712-14720
-
-
Song, Y.1
Cai, X.2
Xu, X.X.3
Liu, X.X.4
-
38
-
-
84860363269
-
4
-
4. Energy Environ. Sci. 5(5), 6909–6913 (2012). doi:10.1039/c2ee21294c
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.5
, pp. 6909-6913
-
-
Tang, W.1
Liu, L.L.2
Zhu, Y.S.3
Sun, H.4
Wu, Y.P.5
Zhu, K.6
-
39
-
-
84867303476
-
5 nanoribbon as high performance anode material for supercapacitors
-
5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2(8), 950–955 (2012). doi:10.1002/aenm.201200088
-
(2012)
Adv. Energy Mater.
, vol.2
, Issue.8
, pp. 950-955
-
-
Qu, Q.T.1
Zhu, Y.S.2
Gao, X.W.3
Wu, Y.P.4
-
40
-
-
84870457982
-
5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance
-
5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. J. Mater. Chem. 22(38), 20143–20145 (2012). doi:10.1039/c2jm34563c
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.38
, pp. 20143-20145
-
-
Tang, W.1
Gao, X.W.2
Zhu, Y.S.3
Yue, Y.B.4
Shi, Y.5
Wu, Y.P.6
Zhu, K.7
-
41
-
-
84889960603
-
3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance
-
3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116, 512–517 (2014). doi:10.1016/j.electacta.2013.11.077
-
(2014)
Electrochim. Acta
, vol.116
, pp. 512-517
-
-
Liu, Y.1
Zhang, B.H.2
Xiao, S.Y.3
Liu, L.L.4
Wen, Z.B.5
Wu, Y.P.6
-
42
-
-
84891886987
-
Conducting polymer nanowire arrays for high performance supercapacitors
-
K. Wang, H.P. Wu, Y.N. Meng, Z.X. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014). doi:10.1002/smll.201301991
-
(2014)
Small
, vol.10
, Issue.1
, pp. 14-31
-
-
Wang, K.1
Wu, H.P.2
Meng, Y.N.3
Wei, Z.X.4
-
43
-
-
84884220561
-
4 core/shell nanoflake arrays as high-performance supercapacitor materials
-
4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 5(17), 8790–8795 (2013). doi:10.1021/am402681m
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.17
, pp. 8790-8795
-
-
Liu, X.Y.1
Shi, S.J.2
Xiong, Q.Q.3
Li, L.4
Zhang, Y.J.5
Tang, H.6
Gu, C.D.7
Wang, X.L.8
Tu, J.P.9
|