-
1
-
-
79960941561
-
Selection of resistant bacteria at very low antibiotic concentrations
-
Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:e1002158. doi:10.1371/journal.ppat.1002158.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Gullberg, E.1
Cao, S.2
Berg, O.G.3
Ilbäck, C.4
Sandegren, L.5
Hughes, D.6
-
2
-
-
81255157431
-
Tackling antibiotic resistance
-
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9:894–6. doi:10.1038/nrmicro2693.
-
(2011)
Nat Rev Microbiol.
, vol.9
, pp. 894-896
-
-
Bush, K.1
Courvalin, P.2
Dantas, G.3
Davies, J.4
Eisenstein, B.5
Huovinen, P.6
-
3
-
-
84897918505
-
Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action
-
Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control. 2012;1:11. doi:10.1186/2047-2994-1-11.
-
(2012)
Antimicrob Resist Infect Control
, vol.1
, pp. 11
-
-
Carlet, J.1
Jarlier, V.2
Harbarth, S.3
Voss, A.4
Goossens, H.5
Pittet, D.6
-
4
-
-
84866873377
-
Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode
-
Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, et al. Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta. 2012;85:145–51. doi:10.1016/j.electacta.2012.07.133.
-
(2012)
Electrochim Acta.
, vol.85
, pp. 145-151
-
-
Sun, W.1
Qi, X.2
Zhang, Y.3
Yang, H.4
Gao, H.5
Chen, Y.6
-
5
-
-
84865130993
-
Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation
-
Krishnamoorthy K. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C. 2012;116:17280–7.
-
(2012)
J Phys Chem C.
, vol.116
, pp. 17280-17287
-
-
Krishnamoorthy, K.1
-
6
-
-
67449164386
-
Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles
-
Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol. 2009;43:4355–60.
-
(2009)
Environ Sci Technol.
, vol.43
, pp. 4355-4360
-
-
Brunet, L.1
Lyon, D.Y.2
Hotze, E.M.3
Alvarez, P.J.J.4
Wiesner, M.R.5
-
7
-
-
84856368337
-
Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes
-
Sawosz E, Chwalibog A, Mitura K, Mitura S, Szeliga J, Niemiec T, et al. Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella Enteritidis and Listeria monocytogenes. J Nanosci Nanotechnol. 2011;11:7635–41. doi:10.1166/jnn.2011.4735.
-
(2011)
J Nanosci Nanotechnol.
, vol.11
, pp. 7635-7641
-
-
Sawosz, E.1
Chwalibog, A.2
Mitura, K.3
Mitura, S.4
Szeliga, J.5
Niemiec, T.6
-
8
-
-
84869876518
-
Recent advances in graphene family materials toxicity investigations
-
Jastrzębska AM, Kurtycz P, Olszyna AR. Recent advances in graphene family materials toxicity investigations. J Nanopart Res. 2012;14:1320. doi:10.1007/s11051-012-1320-8.
-
(2012)
J Nanopart Res.
, vol.14
, pp. 1320
-
-
Jastrzębska, A.M.1
Kurtycz, P.2
Olszyna, A.R.3
-
9
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–4. doi:10.1126/science.1171245.
-
(2009)
Science.
, vol.324
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
Kim, S.4
Nah, J.5
Yang, D.6
-
10
-
-
33847690144
-
The rise of graphene
-
Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91. doi:10.1038/nmat1849.
-
(2007)
Nat Mater.
, vol.6
, pp. 183-191
-
-
Geim, A.K.1
Novoselov, K.S.2
-
11
-
-
80051618011
-
Graphene-based biosensors for detection of bacteria and their metabolic activities
-
Huang Y, Dong X, Liu Y, Li L-J, Chen P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem. 2011;21:12358. doi:10.1039/c1jm11436k.
-
(2011)
J Mater Chem.
, vol.21
, pp. 12358
-
-
Huang, Y.1
Dong, X.2
Liu, Y.3
Li, L.-J.4
Chen, P.5
-
12
-
-
78651481099
-
Graphene edges: a review of their fabrication and characterization
-
Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS. Graphene edges: a review of their fabrication and characterization. Nanoscale. 2011;3:86–95. doi:10.1039/c0nr00600a.
-
(2011)
Nanoscale.
, vol.3
, pp. 86-95
-
-
Jia, X.1
Campos-Delgado, J.2
Terrones, M.3
Meunier, V.4
Dresselhaus, M.S.5
-
13
-
-
46049105319
-
Atomic layer deposition of metal oxides on pristine and functionalized graphene
-
Wang X, Tabakman SM, Dai H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc. 2008;130:8152–3. doi:10.1021/ja8023059.
-
(2008)
J Am Chem Soc.
, vol.130
, pp. 8152-8153
-
-
Wang, X.1
Tabakman, S.M.2
Dai, H.3
-
14
-
-
80051492618
-
Low-energy termination of graphene edges via the formation of narrow nanotubes
-
Ivanovskaya VV, Zobelli A, Wagner P, Heggie MI, Briddon PR, Rayson MJ, et al. Low-energy termination of graphene edges via the formation of narrow nanotubes. Phys Rev Lett. 2011;107:065502. doi:10.1103/PhysRevLett.107.065502.
-
(2011)
Phys Rev Lett.
, vol.107
-
-
Ivanovskaya, V.V.1
Zobelli, A.2
Wagner, P.3
Heggie, M.I.4
Briddon, P.R.5
Rayson, M.J.6
-
15
-
-
84903776009
-
Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane
-
Jaworski S, Sawosz E, Grodzik M, Kutwin M, Wierzbicki M, Włodyga K, et al. Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane. Bull Vet Inst Pulawy. 2013;57:593–8. doi:10.2478/bvip-2013-0101.
-
(2013)
Bull Vet Inst Pulawy.
, vol.57
, pp. 593-598
-
-
Jaworski, S.1
Sawosz, E.2
Grodzik, M.3
Kutwin, M.4
Wierzbicki, M.5
Włodyga, K.6
-
16
-
-
77953295630
-
Graphene based electrochemical sensors and biosensors: a review
-
Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010;22:1027–36. doi:10.1002/elan.200900571.
-
(2010)
Electroanalysis.
, vol.22
, pp. 1027-1036
-
-
Shao, Y.1
Wang, J.2
Wu, H.3
Liu, J.4
Aksay, I.A.5
Lin, Y.6
-
18
-
-
84855833077
-
Biological interactions of graphene-family nanomaterials: an interdisciplinary review
-
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15–34. doi:10.1021/tx200339h.
-
(2012)
Chem Res Toxicol.
, vol.25
, pp. 15-34
-
-
Sanchez, V.C.1
Jachak, A.2
Hurt, R.H.3
Kane, A.B.4
-
19
-
-
77955522923
-
Graphene-based antibacterial paper
-
Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-based antibacterial paper. ACS Nano. 2010;4:4317–23. doi:10.1021/nn101097v.
-
(2010)
ACS Nano.
, vol.4
, pp. 4317-4323
-
-
Hu, W.1
Peng, C.2
Luo, W.3
Lv, M.4
Li, X.5
Li, D.6
-
20
-
-
80053318851
-
Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
-
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5:6971–80. doi:10.1021/nn202451x.
-
(2011)
ACS Nano.
, vol.5
, pp. 6971-6980
-
-
Liu, S.1
Zeng, T.H.2
Hofmann, M.3
Burcombe, E.4
Wei, J.5
Jiang, R.6
-
21
-
-
84856701319
-
Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner
-
Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon N Y. 2012;50:1853–60. doi:10.1016/j.carbon.2011.12.035.
-
(2012)
Carbon N Y.
, vol.50
, pp. 1853-1860
-
-
Akhavan, O.1
Ghaderi, E.2
-
22
-
-
78049352115
-
Toxicity of graphene and graphene oxide nanowalls against bacteria
-
Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–6. doi:10.1021/nn101390x.
-
(2010)
ACS Nano.
, vol.4
, pp. 5731-5736
-
-
Akhavan, O.1
Ghaderi, E.2
-
23
-
-
79957492289
-
Microbial reduction of graphene oxide by Shewanella
-
Wang G, Qian F, Saltikov CW, Jiao Y, Li Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011;4:563–70. doi:10.1007/s12274-011-0112-2.
-
(2011)
Nano Res.
, vol.4
, pp. 563-570
-
-
Wang, G.1
Qian, F.2
Saltikov, C.W.3
Jiao, Y.4
Li, Y.5
-
24
-
-
79952115247
-
Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes
-
Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine. 2010;5:631–7. doi:10.2147/IJN.S12361.
-
(2010)
Int J Nanomedicine.
, vol.5
, pp. 631-637
-
-
Sawosz, E.1
Chwalibog, A.2
Szeliga, J.3
Sawosz, F.4
Grodzik, M.5
Rupiewicz, M.6
-
25
-
-
0025872056
-
Listeria monocytogenes, a food-borne pathogen
-
Farber JM, P.I.P. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55:752.
-
(1991)
Microbiol Rev
, vol.55
, pp. 752
-
-
Farber, J.M.1
P.I.P2
-
26
-
-
0032729448
-
Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions
-
Briandet R, Meylheuc T, Maher C, Bellon-fontaine MN. Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl Environ Microbiol. 1999;65:5328–33.
-
(1999)
Appl Environ Microbiol.
, vol.65
, pp. 5328-5333
-
-
Briandet, R.1
Meylheuc, T.2
Maher, C.3
Bellon-Fontaine, M.N.4
-
27
-
-
84961354567
-
-
WHO. Foodborne disease outbreaks: guidelines for investigation and control. 2008. p. 47–94
-
WHO. Foodborne disease outbreaks: guidelines for investigation and control. 2008. p. 47–94.
-
-
-
-
28
-
-
84860389302
-
The next generation of bacteriophage therapy
-
Lu TK, Koeris MS. The next generation of bacteriophage therapy. Curr Opin Microbiol. 2011;14:524–31. doi:10.1016/j.mib.2011.07.028.
-
(2011)
Curr Opin Microbiol.
, vol.14
, pp. 524-531
-
-
Lu, T.K.1
Koeris, M.S.2
-
29
-
-
80052590067
-
Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy
-
Ryan EM, Gorman SP, Donnelly RF, Gilmore BF. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol. 2011;63:1253–64. doi:10.1111/j.2042-7158.2011.01324.x.
-
(2011)
J Pharm Pharmacol.
, vol.63
, pp. 1253-1264
-
-
Ryan, E.M.1
Gorman, S.P.2
Donnelly, R.F.3
Gilmore, B.F.4
-
30
-
-
0023833139
-
The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis
-
St Louis ME, Morse DL, Potter ME, DeMelfi TM, Guzewich JJ, Tauxe RV, et al. The emergence of grade A eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. JAMA. 1988;259:2103–7.
-
(1988)
JAMA.
, vol.259
, pp. 2103-2107
-
-
St Louis, M.E.1
Morse, D.L.2
Potter, M.E.3
DeMelfi, T.M.4
Guzewich, J.J.5
Tauxe, R.V.6
-
31
-
-
84883878675
-
Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials
-
Veerapandian M, Zhang L, Krishnamoorthy K, Yun K. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials. Nanotechnology. 2013;24:395706. doi:10.1088/0957-4484/24/39/395706.
-
(2013)
Nanotechnology.
, vol.24
-
-
Veerapandian, M.1
Zhang, L.2
Krishnamoorthy, K.3
Yun, K.4
-
32
-
-
79959551350
-
Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties
-
Zhang D, Liu X, Wang X. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J Inorg Biochem. 2011;105:1181–6. doi:10.1016/j.jinorgbio.2011.05.014.
-
(2011)
J Inorg Biochem.
, vol.105
, pp. 1181-1186
-
-
Zhang, D.1
Liu, X.2
Wang, X.3
-
33
-
-
79958824016
-
Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection
-
Bao Q, Zhang D, Qi P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci. 2011;360:463–70. doi:10.1016/j.jcis.2011.05.009.
-
(2011)
J Colloid Interface Sci.
, vol.360
, pp. 463-470
-
-
Bao, Q.1
Zhang, D.2
Qi, P.3
-
34
-
-
84894522886
-
Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity
-
Faria AF, Moraes ACM, Marcato PD, Martinez DST, Durán N, Filho AGS, et al. Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanoparticle Res. 2014;16:2110. doi:10.1007/s11051-013-2110-7.
-
(2014)
J Nanoparticle Res.
, vol.16
, pp. 2110
-
-
Faria, A.F.1
Moraes, A.C.M.2
Marcato, P.D.3
Martinez, D.S.T.4
Durán, N.5
Filho, A.G.S.6
-
35
-
-
80055022730
-
Graphene oxide: a nonspecific enhancer of cellular growth
-
Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, McNamara ND, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5:8100–7. doi:10.1021/nn202699t.
-
(2011)
ACS Nano.
, vol.5
, pp. 8100-8107
-
-
Ruiz, O.N.1
Fernando, K.A.S.2
Wang, B.3
Brown, N.A.4
Luo, P.G.5
McNamara, N.D.6
-
36
-
-
84897373343
-
Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E. coli and S. aureus
-
Chen H, Gao D, Wang B, Zhao R, Guan M, Zheng L, et al. Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E. coli and S. aureus. Nanotechnology. 2014;25:165101. doi:10.1088/0957-4484/25/16/165101.
-
(2014)
Nanotechnology
, vol.25
-
-
Chen, H.1
Gao, D.2
Wang, B.3
Zhao, R.4
Guan, M.5
Zheng, L.6
-
37
-
-
78650121920
-
Reduction of graphene oxide via bacterial respiration
-
Salas EC, Sun Z, Luttge A, Tour JM. Reduction of graphene oxide via bacterial respiration. ACS Nano. 2010;4:4852–6.
-
(2010)
ACS Nano.
, vol.4
, pp. 4852-4856
-
-
Salas, E.C.1
Sun, Z.2
Luttge, A.3
Tour, J.M.4
-
38
-
-
78651073259
-
In vitro toxicity evaluation of graphene oxide on A549 cells
-
Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200:201–10. doi:10.1016/j.toxlet.2010.11.016.
-
(2011)
Toxicol Lett.
, vol.200
, pp. 201-210
-
-
Chang, Y.1
Yang, S.-T.2
Liu, J.-H.3
Dong, E.4
Wang, Y.5
Cao, A.6
-
39
-
-
84893267595
-
Noncovalent interaction with graphene oxide: the crucial role of oxidative debris
-
Coluci VR, Martinez DST, Honório JG, de Faria AF, Morales DA, Skaf MS, et al. Noncovalent interaction with graphene oxide: the crucial role of oxidative debris. J Phys Chem C. 2014;118:2187–93. doi:10.1021/jp409501g.
-
(2014)
J Phys Chem C.
, vol.118
, pp. 2187-2193
-
-
Coluci, V.R.1
Martinez, D.S.T.2
Honório, J.G.3
de Faria, A.F.4
Morales, D.A.5
Skaf, M.S.6
-
40
-
-
33746344730
-
Graphene-based composite materials
-
Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282–6. doi:10.1038/nature04969.
-
(2006)
Nature.
, vol.442
, pp. 282-286
-
-
Stankovich, S.1
Dikin, D.A.2
Dommett, G.H.B.3
Kohlhaas, K.M.4
Zimney, E.J.5
Stach, E.A.6
-
41
-
-
54249157442
-
Site identification of carboxyl groups on graphene edges with Pt derivatives
-
Yuge R, Zhang M, Tomonari M, Yoshitake T, Iijima S, Yudasaka M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano. 2008;2:1865–70. doi:10.1021/nn800352y.
-
(2008)
ACS Nano.
, vol.2
, pp. 1865-1870
-
-
Yuge, R.1
Zhang, M.2
Tomonari, M.3
Yoshitake, T.4
Iijima, S.5
Yudasaka, M.6
-
42
-
-
84883706486
-
Site preferences of carboyxl groups on the periphery of graphene and their characteristic IR spectra
-
Kar T, Scheiner S, Adhikari U, Roy AK. Site preferences of carboyxl groups on the periphery of graphene and their characteristic IR spectra. J Phys Chem C. 2013;117:18206–15. doi:10.1021/jp403728b.
-
(2013)
J Phys Chem C.
, vol.117
, pp. 18206-18215
-
-
Kar, T.1
Scheiner, S.2
Adhikari, U.3
Roy, A.K.4
|