메뉴 건너뛰기




Volumn 299, Issue , 2015, Pages 42-57

Dimensionality reduction by feature clustering for regression problems

Author keywords

Correlation coefficient; Feature clustering; Feature extraction; Machine learning; Mutual information

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COVARIANCE MATRIX; FEATURE EXTRACTION; LEARNING SYSTEMS; MATRIX ALGEBRA; REDUCTION; REGRESSION ANALYSIS; VIRTUAL REALITY;

EID: 84961291920     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.12.003     Document Type: Article
Times cited : (33)

References (63)
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Networks 5 4 1994 537 550
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 4
  • 8
    • 84881499895 scopus 로고
    • Sliced inverse regression for dimension reduction: Comment
    • R.D. Cook, and S. Weisberg Sliced inverse regression for dimension reduction: comment J. Am. Stat. Assoc. 86 414 1991 328 332
    • (1991) J. Am. Stat. Assoc. , vol.86 , Issue.414 , pp. 328-332
    • Cook, R.D.1    Weisberg, S.2
  • 9
    • 37149051296 scopus 로고    scopus 로고
    • Experimental results of the signal processing approach to distributional clustering of terms on reuters-21578 collection
    • M.C. Dalmau, O.W.M. Flórez, Experimental results of the signal processing approach to distributional clustering of terms on reuters-21578 collection, in: Proc. 29th European Conf. IR Research, 2007, pp. 678-681.
    • (2007) Proc. 29th European Conf. IR Research , pp. 678-681
    • Dalmau, M.C.1
  • 10
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • I.S. Dhillon, S. Mallela, and R. Kumar A divisive information-theoretic feature clustering algorithm for text classification J. Mach. Learn. Res. 3 2003 1265 1287
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 11
    • 84884139371 scopus 로고    scopus 로고
    • A graph Laplacian based approach to semi-supervised feature selection for regression problems
    • G. Doquire, and M. Verleysen A graph Laplacian based approach to semi-supervised feature selection for regression problems Neurocomputing 121 2013 5 13
    • (2013) Neurocomputing , vol.121 , pp. 5-13
    • Doquire, G.1    Verleysen, M.2
  • 13
    • 84863068606 scopus 로고    scopus 로고
    • The LASSO and sparse least squares regression methods for SNP selection in predicting quantitative traits
    • Z.Z. Feng, X. Yang, S. Subedi, and P.D. McNicholas The LASSO and sparse least squares regression methods for SNP selection in predicting quantitative traits IEEE/ACM Trans. Comput. Biol. Bioinformatics 9 2 2012 629 636
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.9 , Issue.2 , pp. 629-636
    • Feng, Z.Z.1    Yang, X.2    Subedi, S.3    McNicholas, P.D.4
  • 14
    • 84880930604 scopus 로고    scopus 로고
    • Is mutual information adequate for feature selection in regression?
    • B. Frénay, G. Doquire, and M. Verleysen Is mutual information adequate for feature selection in regression? Neural Networks 48 2013 1 7
    • (2013) Neural Networks , vol.48 , pp. 1-7
    • Frénay, B.1    Doquire, G.2    Verleysen, M.3
  • 19
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
    • J. Hausser, and K. Strimmer Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks J. Mach. Learn. Res. 10 2009 1469 1484
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 21
    • 80051962608 scopus 로고    scopus 로고
    • A variance minimization criterion to feature selection using laplacian regularization
    • X. He, M. Ji, C. Zhang, and H. Bao A variance minimization criterion to feature selection using laplacian regularization IEEE Trans. Pattern Anal. Mach. Intell. 33 10 2011 2013 2025
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.10 , pp. 2013-2025
    • He, X.1    Ji, M.2    Zhang, C.3    Bao, H.4
  • 23
    • 78651559039 scopus 로고    scopus 로고
    • Feature selection via correlation coefficient clustering
    • H.-H. Hsu, and C.-W. Hsieh Feature selection via correlation coefficient clustering J. Software 5 12 2010 1371 1377
    • (2010) J. Software , vol.5 , Issue.12 , pp. 1371-1377
    • Hsu, H.-H.1    Hsieh, C.-W.2
  • 24
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 26
    • 79251527494 scopus 로고    scopus 로고
    • A fuzzy self-constructing feature clustering algorithm for text classification
    • J.-Y. Jiang, R.-J. Liou, and S.-J. Lee A fuzzy self-constructing feature clustering algorithm for text classification IEEE Trans. Knowl. Data Eng. 23 3 2011 335 349
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.3 , pp. 335-349
    • Jiang, J.-Y.1    Liou, R.-J.2    Lee, S.-J.3
  • 28
    • 77952584207 scopus 로고    scopus 로고
    • Feature extraction based on subspace methods for regression problems
    • N. Kwak, and J.-W. Lee Feature extraction based on subspace methods for regression problems Neurocomputing 73 2010 1740 1751
    • (2010) Neurocomputing , vol.73 , pp. 1740-1751
    • Kwak, N.1    Lee, J.-W.2
  • 30
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • D.D. Lewis, Feature selection and feature extraction for text categorization, in: Proc. Workshop Speech and Natural Language, 1992, pp. 212-217.
    • (1992) Proc. Workshop Speech and Natural Language , pp. 212-217
    • Lewis, D.D.1
  • 32
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • K.-C. Li Sliced inverse regression for dimension reduction J. Am. Stat. Assoc. 86 414 1991 316 327
    • (1991) J. Am. Stat. Assoc. , vol.86 , Issue.414 , pp. 316-327
    • Li, K.-C.1
  • 33
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
    • K.-C. Li On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma J. Am. Stat. Assoc. 87 420 1992 1025 1039
    • (1992) J. Am. Stat. Assoc. , vol.87 , Issue.420 , pp. 1025-1039
    • Li, K.-C.1
  • 34
    • 0000702165 scopus 로고
    • Mutual information functions versus correlation functions
    • W. Li Mutual information functions versus correlation functions J. Stat. Phys. 60 1990 823 837
    • (1990) J. Stat. Phys. , vol.60 , pp. 823-837
    • Li, W.1
  • 35
    • 84862817764 scopus 로고    scopus 로고
    • Feature extraction using a fast null space based linear discriminant analysis algorithm
    • G.-F. Lu, and Y. Wang Feature extraction using a fast null space based linear discriminant analysis algorithm Inf. Sci. 193 2012 72 80
    • (2012) Inf. Sci. , vol.193 , pp. 72-80
    • Lu, G.-F.1    Wang, Y.2
  • 38
    • 0034387133 scopus 로고    scopus 로고
    • Coefficients of determination for multiple logistic regression analysis
    • S. Menard Coefficients of determination for multiple logistic regression analysis Am. Stat. 54 1 2000 17 24
    • (2000) Am. Stat. , vol.54 , Issue.1 , pp. 17-24
    • Menard, S.1
  • 39
    • 84859602989 scopus 로고    scopus 로고
    • Feature selection using structural similarity
    • S. Mitra, P.P. Kundu, and W. Pedrycz Feature selection using structural similarity Inf. Sci. 198 2012 48 61
    • (2012) Inf. Sci. , vol.198 , pp. 48-61
    • Mitra, S.1    Kundu, P.P.2    Pedrycz, W.3
  • 40
  • 41
    • 51049112528 scopus 로고    scopus 로고
    • "preconditioning" for feature selection and regression in high-dimensional problems
    • D. Paul, E. Bair, T. Hastie, and R. Tibshirani "Preconditioning" for feature selection and regression in high-dimensional problems Ann. Statist. 36 4 2008 1595 1618
    • (2008) Ann. Statist. , vol.36 , Issue.4 , pp. 1595-1618
    • Paul, D.1    Bair, E.2    Hastie, T.3    Tibshirani, R.4
  • 42
    • 0012903935 scopus 로고
    • Notes on the history of correlation
    • K. Pearson Notes on the history of correlation Biometrika 13 1 1920 25 45
    • (1920) Biometrika , vol.13 , Issue.1 , pp. 25-45
    • Pearson, K.1
  • 44
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 45
    • 84897053423 scopus 로고    scopus 로고
    • Embedded local feature selection within mixture of experts
    • B. Peralta, and A. Soto Embedded local feature selection within mixture of experts Inf. Sci. 269 2014 176 187
    • (2014) Inf. Sci. , vol.269 , pp. 176-187
    • Peralta, B.1    Soto, A.2
  • 47
    • 84961306062 scopus 로고    scopus 로고
    • Regression Data Set, 2013. < http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html >.
    • (2013) Regression Data Set
  • 48
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • F. Rossi, A. Lendasse, D. Francois, V. Wertz, and M. Verleysen Mutual information for the selection of relevant variables in spectrometric nonlinear modelling Chemometr. Intell. Lab. Syst. 80 2005 215 226
    • (2005) Chemometr. Intell. Lab. Syst. , vol.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 49
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 51
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 53
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani Regression shrinkage and selection via the lasso J. R. Stat. Soc. Ser. B 58 1 1996 267 288
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 54
    • 79955040218 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso: A retrospective
    • R. Tibshirani Regression shrinkage and selection via the lasso: a retrospective J. R. Stat. Soc. Ser. B 73 3 2011 273 282
    • (2011) J. R. Stat. Soc. Ser. B , vol.73 , Issue.3 , pp. 273-282
    • Tibshirani, R.1
  • 55
    • 77953353840 scopus 로고    scopus 로고
    • Efficient learning and feature selection in high-dimensional regression
    • J.-A. Ting, A.D. Souza, S. Vijayakumar, and S. Schaal Efficient learning and feature selection in high-dimensional regression Neural Comput. 22 2010 831 886
    • (2010) Neural Comput. , vol.22 , pp. 831-886
    • Ting, J.-A.1    Souza, A.D.2    Vijayakumar, S.3    Schaal, S.4
  • 56
    • 84961367138 scopus 로고    scopus 로고
    • UCI Data Set, 2013. < http://archive.ics.uci.edu/ml/ >.
    • (2013) UCI Data Set
  • 58
    • 84961386451 scopus 로고    scopus 로고
    • S. Weisberg. dr Package. < http://cran.r-project.org/web/packages/dr/index.html >.
    • S. Weisberg. Dr Package
  • 59
    • 34250708626 scopus 로고    scopus 로고
    • A study on mutual information-based feature selection for text categorization
    • Y. Xu, G. Jones, J.-T. Li, B. Wang, and C.-M. Sun A study on mutual information-based feature selection for text categorization J. Comput. Inf. Syst. 3 3 2007 1007 1012
    • (2007) J. Comput. Inf. Syst. , vol.3 , Issue.3 , pp. 1007-1012
    • Xu, Y.1    Jones, G.2    Li, J.-T.3    Wang, B.4    Sun, C.-M.5
  • 60
    • 31644433092 scopus 로고    scopus 로고
    • Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing
    • J. Yan, B. Zhang, N. Liu, S. Yan, Q. Cheng, W. Fan, Q. Yang, W. Xi, and Z. Chen Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing IEEE Trans. Knowl. Data Eng. 18 3 2006 320 333
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.3 , pp. 320-333
    • Yan, J.1    Zhang, B.2    Liu, N.3    Yan, S.4    Cheng, Q.5    Fan, W.6    Yang, Q.7    Xi, W.8    Chen, Z.9
  • 61
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan, and Y. Lin Model selection and estimation in regression with grouped variables J. R. Stat. Soc. Ser. B 68 1 2006 49 67
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 62
    • 84899994283 scopus 로고    scopus 로고
    • Evolutionary combination of kernels for nonlinear feature transformation
    • B. Zamani, A. Akbari, and B. Nasersharif Evolutionary combination of kernels for nonlinear feature transformation Inf. Sci. 274 2014 95 107
    • (2014) Inf. Sci. , vol.274 , pp. 95-107
    • Zamani, B.1    Akbari, A.2    Nasersharif, B.3
  • 63
    • 84876117777 scopus 로고    scopus 로고
    • Efficient sparse modeling with automatic feature grouping
    • L.W. Zhong, and J.T. Kwok Efficient sparse modeling with automatic feature grouping IEEE Trans. Neural Networks Learn. Syst. 23 9 2012 1436 1447
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , Issue.9 , pp. 1436-1447
    • Zhong, L.W.1    Kwok, J.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.