-
1
-
-
0004106191
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. 1999. Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
(1999)
Essentials of glycobiology
-
-
Varki, A.1
Cummings, R.2
Esko, J.3
Freeze, H.4
Hart, G.5
Marth, J.6
-
2
-
-
84889291777
-
Carbohydrates as renewable raw materials: a major challenge of green chemistry
-
Tundo P, Perosa A, Zecchini F (ed), Wiley, Hoboken, NJ
-
Lichtenthaler FW. 2007. Carbohydrates as renewable raw materials: a major challenge of green chemistry, p 23-63. In Tundo P, Perosa A, Zecchini F (ed), Methods and reagents for green chemistry: an introduction. Wiley, Hoboken, NJ
-
(2007)
Methods and reagents for green chemistry: an introduction
, pp. 23-63
-
-
Lichtenthaler, F.W.1
-
3
-
-
84938092538
-
Biocatalysts for biomass deconstruction from environmental genomics
-
Armstrong Z, Mewis K, Strachan C, Hallam SJ. 2015. Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 29:18-25. http://dx.doi.org/10.1016/j.cbpa.2015.06.032
-
(2015)
Curr Opin Chem Biol
, vol.29
, pp. 18-25
-
-
Armstrong, Z.1
Mewis, K.2
Strachan, C.3
Hallam, S.J.4
-
4
-
-
80053088478
-
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
-
Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen J-CN, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A. 2011. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079-15084. http://dx.doi.org/10.1073/pnas.1105776108
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 15079-15084
-
-
Quinlan, R.J.1
Sweeney, M.D.2
Leggio, L.L.3
Otten, H.4
Poulsen, J.-C.N.5
Johansen, K.S.6
Krogh, K.B.7
Jørgensen, C.I.8
Tovborg, M.9
Anthonsen, A.10
-
5
-
-
84897113991
-
Discovery and characterization of a new family of lytic polysaccharide monooxygenases
-
Hemsworth GR, Henrissat B, Davies GJ, Walton PH. 2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122-126. http://dx.doi.org/10.1038/nchembio.1417
-
(2014)
Nat Chem Biol
, vol.10
, pp. 122-126
-
-
Hemsworth, G.R.1
Henrissat, B.2
Davies, G.J.3
Walton, P.H.4
-
6
-
-
0026055308
-
A classification of glycosyl hydrolases based on amino acid sequence similarities
-
Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309-316. http://dx.doi.org/10.1042/bj2800309
-
(1991)
Biochem J
, vol.280
, pp. 309-316
-
-
Henrissat, B.1
-
7
-
-
84891763855
-
The carbohydrate-active enzymes database (CAZy) in 2013
-
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490-D495. http://dx.doi.org/10.1093/nar/gkt1178
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D490-D495
-
-
Lombard, V.1
Ramulu, H.G.2
Drula, E.3
Coutinho, P.M.4
Henrissat, B.5
-
8
-
-
84866500048
-
Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
-
Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. 2012. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186. http://dx.doi.org/10.1186/1471-2148-12-186
-
(2012)
BMC Evol Biol
, vol.12
, pp. 186
-
-
Aspeborg, H.1
Coutinho, P.M.2
Wang, Y.3
Brumer, H.4
Henrissat, B.5
-
9
-
-
33845665889
-
Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins
-
Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555-562. http://dx.doi.org/10.1093/protein/gzl044
-
(2006)
Protein Eng Des Sel
, vol.19
, pp. 555-562
-
-
Stam, M.R.1
Danchin, E.G.2
Rancurel, C.3
Coutinho, P.M.4
Henrissat, B.5
-
10
-
-
78049264854
-
Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups
-
St John FJ, González JM, Pozharski E. 2010. Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584:4435-4441. http://dx.doi.org/10.1016/j.febslet.2010.09.051
-
(2010)
FEBS Lett
, vol.584
, pp. 4435-4441
-
-
St John, F.J.1
González, J.M.2
Pozharski, E.3
-
11
-
-
78649868163
-
A hierarchical classification of polysaccharide lyases for glycogenomics
-
Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho P, Henrissat B. 2010. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437-444. http://dx.doi.org/10.1042/BJ20101185
-
(2010)
Biochem J
, vol.432
, pp. 437-444
-
-
Lombard, V.1
Bernard, T.2
Rancurel, C.3
Brumer, H.4
Coutinho, P.5
Henrissat, B.6
-
12
-
-
0036730089
-
Cellvibrio japonicus α-L-arabinanase 43A has a novel five-blade β-propeller fold
-
Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ. 2002. Cellvibrio japonicus α-L-arabinanase 43A has a novel five-blade β-propeller fold. Nat Struct Mol Biol 9:665-668. http://dx.doi.org/10.1038/nsb835
-
(2002)
Nat Struct Mol Biol
, vol.9
, pp. 665-668
-
-
Nurizzo, D.1
Turkenburg, J.P.2
Charnock, S.J.3
Roberts, S.M.4
Dodson, E.J.5
McKie, V.A.6
Taylor, E.J.7
Gilbert, H.J.8
Davies, G.J.9
-
13
-
-
59849117690
-
Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family
-
Vandermarliere E, Bourgois T, Winn M, Van Campenhout S, Volckaert G, Delcour J, Strelkov S, Rabijns A, Courtin C. 2009. Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem J 418:39-47. http://dx.doi.org/10.1042/BJ20081256
-
(2009)
Biochem J
, vol.418
, pp. 39-47
-
-
Vandermarliere, E.1
Bourgois, T.2
Winn, M.3
Van Campenhout, S.4
Volckaert, G.5
Delcour, J.6
Strelkov, S.7
Rabijns, A.8
Courtin, C.9
-
14
-
-
84868487678
-
Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum
-
Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, Zhang XC. 2012. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J Struct Biol 180:447-457. http://dx.doi.org/10.1016/j.jsb.2012.08.005
-
(2012)
J Struct Biol
, vol.180
, pp. 447-457
-
-
Jiang, D.1
Fan, J.2
Wang, X.3
Zhao, Y.4
Huang, B.5
Liu, J.6
Zhang, X.C.7
-
15
-
-
84925005930
-
Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
-
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410-415. http://dx.doi.org/10.1038/ng.3223
-
(2015)
Nat Genet
, vol.47
, pp. 410-415
-
-
Kohler, A.1
Kuo, A.2
Nagy, L.G.3
Morin, E.4
Barry, K.W.5
Buscot, F.6
Canbäck, B.7
Choi, C.8
Cichocki, N.9
Clum, A.10
-
16
-
-
84879411201
-
The abundance and variety of carbohydrate-active enzymes in the human gut microbiota
-
El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497-504. http://dx.doi.org/10.1038/nrmicro3050
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 497-504
-
-
El Kaoutari, A.1
Armougom, F.2
Gordon, J.I.3
Raoult, D.4
Henrissat, B.5
-
17
-
-
84947983159
-
Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides
-
Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J, Latreille P, Kerstetter RA, Terrapon N, Henrissat B, Osterman AL, Gordon JI. 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350:aac5992. http://dx.doi.org/10.1126/science.aac5992
-
(2015)
Science
, vol.350
-
-
Wu, M.1
McNulty, N.P.2
Rodionov, D.A.3
Khoroshkin, M.S.4
Griffin, N.W.5
Cheng, J.6
Latreille, P.7
Kerstetter, R.A.8
Terrapon, N.9
Henrissat, B.10
Osterman, A.L.11
Gordon, J.I.12
-
18
-
-
84870431038
-
CD-HIT: accelerated for clustering the next-generation sequencing data
-
Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152. http://dx.doi.org/10.1093/bioinformatics/bts565
-
(2012)
Bioinformatics
, vol.28
, pp. 3150-3152
-
-
Fu, L.1
Niu, B.2
Zhu, Z.3
Wu, S.4
Li, W.5
-
19
-
-
3042666256
-
MUSCLE: multiple sequence alignment with high accuracy and high throughput
-
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. http://dx.doi.org/10.1093/nar/gkh340
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
-
20
-
-
84875619226
-
MAFFT multiple sequence alignment software version 7: improvements in performance and usability
-
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772-780. http://dx.doi.org/10.1093/molbev/mst010
-
(2013)
Mol Biol Evol
, vol.30
, pp. 772-780
-
-
Katoh, K.1
Standley, D.M.2
-
21
-
-
67649327176
-
FastTree: computing large minimum evolution trees with profiles instead of a distance matrix
-
Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641-1650. http://dx.doi.org/10.1093/molbev/msp077
-
(2009)
Mol Biol Evol
, vol.26
, pp. 1641-1650
-
-
Price, M.N.1
Dehal, P.S.2
Arkin, A.P.3
-
22
-
-
84880213068
-
Challenges in homology search:HMMER3and convergent evolution of coiled-coil regions
-
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search:HMMER3and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121. http://dx.doi.org/10.1093/nar/gkt263
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Mistry, J.1
Finn, R.D.2
Eddy, S.R.3
Bateman, A.4
Punta, M.5
-
23
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
-
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.L.2
Schäffer, A.A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.J.7
-
24
-
-
84879099738
-
Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium
-
Huy ND, Thayumanavan P, Kwon T-H, Park S-M. 2013. Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium. J Biosci Bioeng 116:152-159. http://dx.doi.org/10.1016/j.jbiosc.2013.02.004
-
(2013)
J Biosci Bioeng
, vol.116
, pp. 152-159
-
-
Huy, N.D.1
Thayumanavan, P.2
Kwon, T.-H.3
Park, S.-M.4
-
25
-
-
84895478762
-
β-Xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation
-
Lagaert S, Pollet A, Courtin CM, Volckaert G. 2014. β-Xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32:316-332. http://dx.doi.org/10.1016/j.biotechadv.2013.11.005
-
(2014)
Biotechnol Adv
, vol.32
, pp. 316-332
-
-
Lagaert, S.1
Pollet, A.2
Courtin, C.M.3
Volckaert, G.4
-
26
-
-
84860122751
-
Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains
-
McKee LS, Peña MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KBRM, Viksø-Nielsen A, Skjøt M, Gilbert HJ, Marles-Wright J. 2012. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci U S A 109:6537-6542. http://dx.doi.org/10.1073/pnas.1117686109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 6537-6542
-
-
McKee, L.S.1
Peña, M.J.2
Rogowski, A.3
Jackson, A.4
Lewis, R.J.5
York, W.S.6
Krogh, K.B.R.M.7
Viksø-Nielsen, A.8
Skjøt, M.9
Gilbert, H.J.10
Marles-Wright, J.11
-
27
-
-
15544368918
-
Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083
-
van den Broek LM, Lloyd R, Beldman G, Verdoes J, McCleary B, Voragen AJ. 2005. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67:641-647. http://dx.doi.org/10.1007/s00253-004-1850-9
-
(2005)
Appl Microbiol Biotechnol
, vol.67
, pp. 641-647
-
-
van den Broek, L.M.1
Lloyd, R.2
Beldman, G.3
Verdoes, J.4
McCleary, B.5
Voragen, A.J.6
-
28
-
-
17144395568
-
Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18
-
Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N. 2005. Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:1745-1755. http://dx.doi.org/10.1111/j.1742-4658.2005.04606.x
-
(2005)
FEBS J
, vol.272
, pp. 1745-1755
-
-
Durand, A.1
Hughes, R.2
Roussel, A.3
Flatman, R.4
Henrissat, B.5
Juge, N.6
-
29
-
-
0034671719
-
High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base
-
Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B. 2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 275: 39385-39393. http://dx.doi.org/10.1074/jbc.M006796200
-
(2000)
J Biol Chem
, vol.275
, pp. 39385-39393
-
-
Burmeister, W.P.1
Cottaz, S.2
Rollin, P.3
Vasella, A.4
Henrissat, B.5
-
30
-
-
70350508344
-
Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules
-
Abbott DW, Ficko-Blean E, van Bueren AL, Rogowski A, Cartmell A, Coutinho PM, Henrissat B, Gilbert HJ, Boraston AB. 2009. Analysis of the structural and functional diversity of plant cell wall specific family 6 carbohydrate binding modules. Biochemistry (Mosc) 48:10395-10404. http://dx.doi.org/10.1021/bi9013424
-
(2009)
Biochemistry (Mosc)
, vol.48
, pp. 10395-10404
-
-
Abbott, D.W.1
Ficko-Blean, E.2
van Bueren, A.L.3
Rogowski, A.4
Cartmell, A.5
Coutinho, P.M.6
Henrissat, B.7
Gilbert, H.J.8
Boraston, A.B.9
-
31
-
-
84891934604
-
Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco-and galactosubstituted mannans and its calcium induced stability
-
Ghosh A, Luís AS, Brás JLA, Pathaw N, Chrungoo NK, Fontes CMGA, Goyal A. 2013. Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco-and galactosubstituted mannans and its calcium induced stability. PLoS One 8:e80415. http://dx.doi.org/10.1371/journal.pone.0080415
-
(2013)
PLoS One
, vol.8
-
-
Ghosh, A.1
Luís, A.S.2
Brás, J.L.A.3
Pathaw, N.4
Chrungoo, N.K.5
Fontes, C.M.G.A.6
Goyal, A.7
-
32
-
-
0030898058
-
New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme
-
Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D. 1997. New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem J 322:845-852. http://dx.doi.org/10.1042/bj3220845
-
(1997)
Biochem J
, vol.322
, pp. 845-852
-
-
Vincent, P.1
Shareck, F.2
Dupont, C.3
Morosoli, R.4
Kluepfel, D.5
-
33
-
-
7244254401
-
Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose
-
Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S. 2004. Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem 279:44907-44914. http://dx.doi.org/10.1074/jbc.M405390200
-
(2004)
J Biol Chem
, vol.279
, pp. 44907-44914
-
-
Miyanaga, A.1
Koseki, T.2
Matsuzawa, H.3
Wakagi, T.4
Shoun, H.5
Fushinobu, S.6
|