메뉴 건너뛰기




Volumn 82, Issue 6, 2016, Pages 1686-1692

Dividing the large glycoside hydrolase family 43 into subfamilies: A motivation for detailed enzyme characterization

Author keywords

[No Author keywords available]

Indexed keywords

DNA SEQUENCES; ENZYMES; GENE ENCODING; HYDROLASES; SUGARS;

EID: 84961282092     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.03453-15     Document Type: Article
Times cited : (174)

References (33)
  • 2
    • 84889291777 scopus 로고    scopus 로고
    • Carbohydrates as renewable raw materials: a major challenge of green chemistry
    • Tundo P, Perosa A, Zecchini F (ed), Wiley, Hoboken, NJ
    • Lichtenthaler FW. 2007. Carbohydrates as renewable raw materials: a major challenge of green chemistry, p 23-63. In Tundo P, Perosa A, Zecchini F (ed), Methods and reagents for green chemistry: an introduction. Wiley, Hoboken, NJ
    • (2007) Methods and reagents for green chemistry: an introduction , pp. 23-63
    • Lichtenthaler, F.W.1
  • 3
    • 84938092538 scopus 로고    scopus 로고
    • Biocatalysts for biomass deconstruction from environmental genomics
    • Armstrong Z, Mewis K, Strachan C, Hallam SJ. 2015. Biocatalysts for biomass deconstruction from environmental genomics. Curr Opin Chem Biol 29:18-25. http://dx.doi.org/10.1016/j.cbpa.2015.06.032
    • (2015) Curr Opin Chem Biol , vol.29 , pp. 18-25
    • Armstrong, Z.1    Mewis, K.2    Strachan, C.3    Hallam, S.J.4
  • 5
    • 84897113991 scopus 로고    scopus 로고
    • Discovery and characterization of a new family of lytic polysaccharide monooxygenases
    • Hemsworth GR, Henrissat B, Davies GJ, Walton PH. 2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122-126. http://dx.doi.org/10.1038/nchembio.1417
    • (2014) Nat Chem Biol , vol.10 , pp. 122-126
    • Hemsworth, G.R.1    Henrissat, B.2    Davies, G.J.3    Walton, P.H.4
  • 6
    • 0026055308 scopus 로고
    • A classification of glycosyl hydrolases based on amino acid sequence similarities
    • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309-316. http://dx.doi.org/10.1042/bj2800309
    • (1991) Biochem J , vol.280 , pp. 309-316
    • Henrissat, B.1
  • 8
    • 84866500048 scopus 로고    scopus 로고
    • Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
    • Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. 2012. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186. http://dx.doi.org/10.1186/1471-2148-12-186
    • (2012) BMC Evol Biol , vol.12 , pp. 186
    • Aspeborg, H.1    Coutinho, P.M.2    Wang, Y.3    Brumer, H.4    Henrissat, B.5
  • 9
    • 33845665889 scopus 로고    scopus 로고
    • Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins
    • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555-562. http://dx.doi.org/10.1093/protein/gzl044
    • (2006) Protein Eng Des Sel , vol.19 , pp. 555-562
    • Stam, M.R.1    Danchin, E.G.2    Rancurel, C.3    Coutinho, P.M.4    Henrissat, B.5
  • 10
    • 78049264854 scopus 로고    scopus 로고
    • Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups
    • St John FJ, González JM, Pozharski E. 2010. Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584:4435-4441. http://dx.doi.org/10.1016/j.febslet.2010.09.051
    • (2010) FEBS Lett , vol.584 , pp. 4435-4441
    • St John, F.J.1    González, J.M.2    Pozharski, E.3
  • 11
    • 78649868163 scopus 로고    scopus 로고
    • A hierarchical classification of polysaccharide lyases for glycogenomics
    • Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho P, Henrissat B. 2010. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437-444. http://dx.doi.org/10.1042/BJ20101185
    • (2010) Biochem J , vol.432 , pp. 437-444
    • Lombard, V.1    Bernard, T.2    Rancurel, C.3    Brumer, H.4    Coutinho, P.5    Henrissat, B.6
  • 13
    • 59849117690 scopus 로고    scopus 로고
    • Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family
    • Vandermarliere E, Bourgois T, Winn M, Van Campenhout S, Volckaert G, Delcour J, Strelkov S, Rabijns A, Courtin C. 2009. Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family. Biochem J 418:39-47. http://dx.doi.org/10.1042/BJ20081256
    • (2009) Biochem J , vol.418 , pp. 39-47
    • Vandermarliere, E.1    Bourgois, T.2    Winn, M.3    Van Campenhout, S.4    Volckaert, G.5    Delcour, J.6    Strelkov, S.7    Rabijns, A.8    Courtin, C.9
  • 14
    • 84868487678 scopus 로고    scopus 로고
    • Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum
    • Jiang D, Fan J, Wang X, Zhao Y, Huang B, Liu J, Zhang XC. 2012. Crystal structure of 1,3Gal43A, an exo-β-1,3-galactanase from Clostridium thermocellum. J Struct Biol 180:447-457. http://dx.doi.org/10.1016/j.jsb.2012.08.005
    • (2012) J Struct Biol , vol.180 , pp. 447-457
    • Jiang, D.1    Fan, J.2    Wang, X.3    Zhao, Y.4    Huang, B.5    Liu, J.6    Zhang, X.C.7
  • 16
    • 84879411201 scopus 로고    scopus 로고
    • The abundance and variety of carbohydrate-active enzymes in the human gut microbiota
    • El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497-504. http://dx.doi.org/10.1038/nrmicro3050
    • (2013) Nat Rev Microbiol , vol.11 , pp. 497-504
    • El Kaoutari, A.1    Armougom, F.2    Gordon, J.I.3    Raoult, D.4    Henrissat, B.5
  • 18
    • 84870431038 scopus 로고    scopus 로고
    • CD-HIT: accelerated for clustering the next-generation sequencing data
    • Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152. http://dx.doi.org/10.1093/bioinformatics/bts565
    • (2012) Bioinformatics , vol.28 , pp. 3150-3152
    • Fu, L.1    Niu, B.2    Zhu, Z.3    Wu, S.4    Li, W.5
  • 19
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. http://dx.doi.org/10.1093/nar/gkh340
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 20
    • 84875619226 scopus 로고    scopus 로고
    • MAFFT multiple sequence alignment software version 7: improvements in performance and usability
    • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772-780. http://dx.doi.org/10.1093/molbev/mst010
    • (2013) Mol Biol Evol , vol.30 , pp. 772-780
    • Katoh, K.1    Standley, D.M.2
  • 21
    • 67649327176 scopus 로고    scopus 로고
    • FastTree: computing large minimum evolution trees with profiles instead of a distance matrix
    • Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641-1650. http://dx.doi.org/10.1093/molbev/msp077
    • (2009) Mol Biol Evol , vol.26 , pp. 1641-1650
    • Price, M.N.1    Dehal, P.S.2    Arkin, A.P.3
  • 22
    • 84880213068 scopus 로고    scopus 로고
    • Challenges in homology search:HMMER3and convergent evolution of coiled-coil regions
    • Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search:HMMER3and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121. http://dx.doi.org/10.1093/nar/gkt263
    • (2013) Nucleic Acids Res , vol.41
    • Mistry, J.1    Finn, R.D.2    Eddy, S.R.3    Bateman, A.4    Punta, M.5
  • 24
    • 84879099738 scopus 로고    scopus 로고
    • Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium
    • Huy ND, Thayumanavan P, Kwon T-H, Park S-M. 2013. Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium. J Biosci Bioeng 116:152-159. http://dx.doi.org/10.1016/j.jbiosc.2013.02.004
    • (2013) J Biosci Bioeng , vol.116 , pp. 152-159
    • Huy, N.D.1    Thayumanavan, P.2    Kwon, T.-H.3    Park, S.-M.4
  • 25
    • 84895478762 scopus 로고    scopus 로고
    • β-Xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation
    • Lagaert S, Pollet A, Courtin CM, Volckaert G. 2014. β-Xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32:316-332. http://dx.doi.org/10.1016/j.biotechadv.2013.11.005
    • (2014) Biotechnol Adv , vol.32 , pp. 316-332
    • Lagaert, S.1    Pollet, A.2    Courtin, C.M.3    Volckaert, G.4
  • 27
    • 15544368918 scopus 로고    scopus 로고
    • Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083
    • van den Broek LM, Lloyd R, Beldman G, Verdoes J, McCleary B, Voragen AJ. 2005. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67:641-647. http://dx.doi.org/10.1007/s00253-004-1850-9
    • (2005) Appl Microbiol Biotechnol , vol.67 , pp. 641-647
    • van den Broek, L.M.1    Lloyd, R.2    Beldman, G.3    Verdoes, J.4    McCleary, B.5    Voragen, A.J.6
  • 28
    • 17144395568 scopus 로고    scopus 로고
    • Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18
    • Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N. 2005. Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:1745-1755. http://dx.doi.org/10.1111/j.1742-4658.2005.04606.x
    • (2005) FEBS J , vol.272 , pp. 1745-1755
    • Durand, A.1    Hughes, R.2    Roussel, A.3    Flatman, R.4    Henrissat, B.5    Juge, N.6
  • 29
    • 0034671719 scopus 로고    scopus 로고
    • High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base
    • Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B. 2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 275: 39385-39393. http://dx.doi.org/10.1074/jbc.M006796200
    • (2000) J Biol Chem , vol.275 , pp. 39385-39393
    • Burmeister, W.P.1    Cottaz, S.2    Rollin, P.3    Vasella, A.4    Henrissat, B.5
  • 31
    • 84891934604 scopus 로고    scopus 로고
    • Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco-and galactosubstituted mannans and its calcium induced stability
    • Ghosh A, Luís AS, Brás JLA, Pathaw N, Chrungoo NK, Fontes CMGA, Goyal A. 2013. Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco-and galactosubstituted mannans and its calcium induced stability. PLoS One 8:e80415. http://dx.doi.org/10.1371/journal.pone.0080415
    • (2013) PLoS One , vol.8
    • Ghosh, A.1    Luís, A.S.2    Brás, J.L.A.3    Pathaw, N.4    Chrungoo, N.K.5    Fontes, C.M.G.A.6    Goyal, A.7
  • 32
    • 0030898058 scopus 로고    scopus 로고
    • New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme
    • Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D. 1997. New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem J 322:845-852. http://dx.doi.org/10.1042/bj3220845
    • (1997) Biochem J , vol.322 , pp. 845-852
    • Vincent, P.1    Shareck, F.2    Dupont, C.3    Morosoli, R.4    Kluepfel, D.5
  • 33
    • 7244254401 scopus 로고    scopus 로고
    • Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose
    • Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S. 2004. Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem 279:44907-44914. http://dx.doi.org/10.1074/jbc.M405390200
    • (2004) J Biol Chem , vol.279 , pp. 44907-44914
    • Miyanaga, A.1    Koseki, T.2    Matsuzawa, H.3    Wakagi, T.4    Shoun, H.5    Fushinobu, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.