메뉴 건너뛰기




Volumn 69, Issue , 2016, Pages

Global, parameterwise and joint shrinkage factor estimation

Author keywords

Global shrinkage; Parameterwise shrinkage; Prediction; R package; Regression

Indexed keywords


EID: 84961262651     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v069.i08     Document Type: Article
Times cited : (27)

References (37)
  • 1
    • 84961270347 scopus 로고    scopus 로고
    • Mfp: Multivariable Fractional Polynomials
    • URL
    • Ambler G, Benner A (2015). mfp: Multivariable Fractional Polynomials. R package version 1.5.2, URL https://CRAN.R-project.org/package=mfp.
    • (2015) R Package Version 1.5.2
    • Ambler, G.1    Benner, A.2
  • 3
    • 0001587464 scopus 로고
    • The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Pre diction Error
    • Breiman L (1992). “The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Pre diction Error.” Journal of the American Statistical Association, 87(419), 738-754. doi:10.1080/01621459.1992.10475276.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.419 , pp. 738-754
    • Breiman, L.1
  • 4
    • 0002632234 scopus 로고
    • An Introduction to Empirical Bayes Data Analysis
    • Casella G (1985). “An Introduction to Empirical Bayes Data Analysis” The American Statistician, 39(2), 83-87. doi:10.2307/2682801.
    • (1985) The American Statistician , vol.39 , Issue.2 , pp. 83-87
    • Casella, G.1
  • 6
    • 0031160755 scopus 로고    scopus 로고
    • Using Regression Models for Prediction: Shrinkage and Regression to the Mean
    • Copas JB (1997). “Using Regression Models for Prediction: Shrinkage and Regression to the Mean.” Statistical Methods in Medical Research, 6(2), 167-183.
    • (1997) Statistical Methods in Medical Research , vol.6 , Issue.2 , pp. 167-183
    • Copas, J.B.1
  • 7
    • 0009020169 scopus 로고
    • Estimating the Residual Variance in Orthogonal Regression with Variable Selection
    • Copas JB, Long T (1991). “Estimating the Residual Variance in Orthogonal Regression with Variable Selection.” Journal of the Royal Statistical Society D, 40(1), 51-59. doi: 10.2307/2348223.
    • (1991) Journal of the Royal Statistical Society D , vol.40 , Issue.1 , pp. 51-59
    • Copas, J.B.1    Long, T.2
  • 9
    • 0024596532 scopus 로고
    • Flexible Regression Models with Cubic Splines
    • Durrleman S, Simon R (1989). “Flexible Regression Models with Cubic Splines” Statistics in Medicine, 8(5), 551-561. doi:10.1002/sim.4780080504.
    • (1989) Statistics in Medicine , vol.8 , Issue.5 , pp. 551-561
    • Durrleman, S.1    Simon, R.2
  • 10
    • 0343784734 scopus 로고
    • Biased Versus Unbiased Estimation
    • Efron B (1975). “Biased Versus Unbiased Estimation.” Advances in Mathematics, 16(3), 259-277. doi:10.1016/0001-8708(75)90114-0.
    • (1975) Advances in Mathematics , vol.16 , Issue.3 , pp. 259-277
    • Efron, B.1
  • 11
    • 84949161149 scopus 로고
    • Steins Estimation Rule and Its Competitors – An Empirical Bayes Approach.”
    • Efron B, Morris C (1973). “Stein’s Estimation Rule and Its Competitors – An Empirical Bayes Approach.” Journal of the American Statistical Association, 68(341), 117-130. doi: 10.1080/01621459.1973.10481350.
    • (1973) Journal of the American Statistical Association , vol.68 , Issue.341 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 12
    • 77950920123 scopus 로고    scopus 로고
    • Risk Assessment of Recurrence in Patients With Unprovoked Deep Vein Thrombosis or Pulmonary Embolism – The Vienna Prediction Model
    • Eichinger S, Heinze G, Jandeck LM, Kyrle P (2010). “Risk Assessment of Recurrence in Patients With Unprovoked Deep Vein Thrombosis or Pulmonary Embolism – The Vienna Prediction Model” Circulation, 121(14), 1630-1636. doi:10.1161/circulationaha.109.925214.
    • (2010) Circulation , vol.121 , Issue.14 , pp. 1630-1636
    • Eichinger, S.1    Heinze, G.2    Jandeck, L.M.3    Kyrle, P.4
  • 13
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman JH, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent” Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0033994631 scopus 로고    scopus 로고
    • Principles of Multilevel Modelling
    • Greenland S (2000). “Principles of Multilevel Modelling” International Journal of Epidemiology, 29(1), 158-167. doi:10.1093/ije/29.1.158.
    • (2000) International Journal of Epidemiology , vol.29 , Issue.1 , pp. 158-167
    • Greenland, S.1
  • 15
    • 84942487147 scopus 로고
    • Ridge Regression: Applications to Nonorthogonal Problems
    • Hoerl AE, Kennard RW (1970a). “Ridge Regression: Applications to Nonorthogonal Problems.” Technometrics, 12(1), 69-82. doi:10.1080/00401706.1970.10488635.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 69-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 16
    • 84942484786 scopus 로고
    • Ridge Regression: Biased Estimation for Nonorthogonal Problems
    • Hoerl AE, Kennard RW (1970b). “Ridge Regression: Biased Estimation for Nonorthogonal Problems.” Technometrics, 12(1), 55-67. doi:10.2307/1267351.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 17
    • 84961270348 scopus 로고    scopus 로고
    • CRAN Task View: Machine Learning & Statistical Learning
    • Hothorn T (2015). “CRAN Task View: Machine Learning & Statistical Learning” Version 2015-12-02, URL https://CRAN.R-project.org/view=MachineLearning.
    • (2015) Version 2015-12-02
    • Hothorn, T.1
  • 19
    • 84930161442 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria. URL
    • R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2015) R Foundation for Statistical Computing
    • Core Team, R.1
  • 21
    • 0004509186 scopus 로고
    • Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling
    • Royston P, Altman DG (1994). “Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling.” Journal of the Royal Statistical Society C, 43(3), 429-467. doi:10.2307/2986270.
    • (1994) Journal of the Royal Statistical Society C , vol.43 , Issue.3 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 23
    • 0033426505 scopus 로고    scopus 로고
    • The Use of Resampling Methods to Simplify Regression Models in Medical Statistics
    • Sauerbrei W (1999). “The Use of Resampling Methods to Simplify Regression Models in Medical Statistics.” Journal of the Royal Statistical Society C, 48(3), 313-329. doi:10.1111/1467-9876.00155.
    • (1999) Journal of the Royal Statistical Society C , vol.48 , Issue.3 , pp. 313-329
    • Sauerbrei, W.1
  • 24
    • 33646921786 scopus 로고    scopus 로고
    • Multivariable Regression Model Building by Using Fractional Polynomials: Description of SAS, Stata and R Programs
    • Sauerbrei W, Meier-Hirmer C, Benner A, Royston P (2006). “Multivariable Regression Model Building by Using Fractional Polynomials: Description of SAS, Stata and R Programs” Computational Statistics & Data Analysis, 50(12), 3464-3485. doi:10.1016/j.csda.2005.07.015.
    • (2006) Computational Statistics & Data Analysis , vol.50 , Issue.12 , pp. 3464-3485
    • Sauerbrei, W.1    Meier-Hirmer, C.2    Benner, A.3    Royston, P.4
  • 25
    • 0033474286 scopus 로고    scopus 로고
    • Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials
    • Sauerbrei W, Royston P (1999). “Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials” Journal of the Royal Statistical Society A, 162(1), 72-94. doi:10.1111/1467-985x.00122.
    • (1999) Journal of the Royal Statistical Society A , vol.162 , Issue.1 , pp. 72-94
    • Sauerbrei, W.1    Royston, P.2
  • 29
    • 0035530911 scopus 로고    scopus 로고
    • Application of Shrinkage Techniques in Logistic Regression Analysis: A Case Study
    • Steyerberg EW, Eijkemans MJC, Habbema JDF (2001). “Application of Shrinkage Techniques in Logistic Regression Analysis: A Case Study” Statistica Neerlandica, 55(1), 76-88. doi:10.1111/1467-9574.00157.
    • (2001) Statistica Neerlandica , vol.55 , Issue.1 , pp. 76-88
    • Steyerberg, E.W.1    Eijkemans, M.2    Habbema, J.3
  • 30
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic Modelling with Logistic Regression Analysis: A Comparison of Selection and Estimation Methods in Small Data Sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JD (2000). “Prognostic Modelling with Logistic Regression Analysis: A Comparison of Selection and Estimation Methods in Small Data Sets” Statistics in Medicine, 19(8), 1059-1079. doi:10.1002/(sici) 1097-0258(20000430)19:8<1059::aid-sim412>3.3.co;2-s.
    • (2000) Statistics in Medicine , vol.19 , Issue.8 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.2    Harrell, F.E.3    Habbema, J.D.4
  • 31
    • 23044489908 scopus 로고    scopus 로고
    • Modeling Survival Data
    • Springer-Verlag, New York
    • Therneau TM, Grambsch PM (2000). Modeling Survival Data. Extending the Cox Model. Springer-Verlag, New York. doi:10.1007/978-1-4757-3294-8.
    • (2000) Extending the Cox Model
    • Therneau, T.M.1    Grambsch, P.M.2
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the LASSO
    • Tibshirani R (1996). “Regression Shrinkage and Selection via the LASSO” Journal of the Royal Statistical Society B, 58(1), 267-288.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 79955040218 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the LASSO: A Retrospective
    • Tibshirani R (2011). “Regression Shrinkage and Selection via the LASSO: A Retrospective” Journal of the Royal Statistical Society B, 73(3), 273-282. doi:10.1111/j.1467-9868.2011.00771.x.
    • (2011) Journal of the Royal Statistical Society B , vol.73 , Issue.3 , pp. 273-282
    • Tibshirani, R.1
  • 34
    • 84930689171 scopus 로고    scopus 로고
    • Cross-Validation, Shrinkage and Variable Selection in Linear Regression Revisited
    • van Houwelingen HC, Sauerbrei W (2013). “Cross-Validation, Shrinkage and Variable Selection in Linear Regression Revisited” Open Journal of Statistics, 3(2), 79-102. doi: 10.4236/ojs.2013.32011.
    • (2013) Open Journal of Statistics , vol.3 , Issue.2 , pp. 79-102
    • Van Houwelingen, H.C.1    Sauerbrei, W.2
  • 35
    • 0035530906 scopus 로고    scopus 로고
    • Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy
    • van Houwelingen JC (2001). “Shrinkage and Penalized Likelihood as Methods to Improve Predictive Accuracy” Statistica Neerlandica, 55(1), 17-34. doi:10.1111/1467-9574.00154.
    • (2001) Statistica Neerlandica , vol.55 , Issue.1 , pp. 17-34
    • Van Houwelingen, J.C.1
  • 36
    • 0025151933 scopus 로고
    • Predictive Value of Statistical Models
    • van Houwelingen JC, le Cessie S (1990). “Predictive Value of Statistical Models” Statistics in Medicine, 9(11), 1303-1325. doi:10.1002/sim.4780091109.
    • (1990) Statistics in Medicine , vol.9 , Issue.11 , pp. 1303-1325
    • Van Houwelingen, J.C.1    Le Cessie, S.2
  • 37
    • 0027765563 scopus 로고
    • Cross-Validation in Survival Analysis
    • Verweij PJM, van Houwelingen HC (1993). “Cross-Validation in Survival Analysis.” Statistics in Medicine, 12(24), 2305-2314. doi:10.1002/sim.4780122407.
    • (1993) Statistics in Medicine , vol.12 , Issue.24 , pp. 2305-2314
    • Verweij, P.1    Van Houwelingen, H.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.