-
1
-
-
33847202724
-
Learning to predict by the methods of temporal differences
-
R. S. Sutton, Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9 (1988).
-
(1988)
Mach. Learn
, vol.3
, pp. 9
-
-
Sutton, R.S.1
-
2
-
-
0030896968
-
A neural substrate of prediction and reward
-
pmid: 9054347
-
W. Schultz, P. Dayan, P. R. Montague, A neural substrate of prediction and reward. Science 275, 1593-1599 (1997). doi: 10.1126/science.275.5306.1593; pmid: 9054347
-
(1997)
Science
, vol.275
, pp. 1593-1599
-
-
Schultz, W.1
Dayan, P.2
Montague, P.R.3
-
3
-
-
34948906745
-
Solving the distal reward problem through linkage of STDP and dopamine signaling
-
pmid: 17220510
-
E. M. Izhikevich, Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443-2452 (2007). doi: 10.1093/cercor/bhl152; pmid: 17220510
-
(2007)
Cereb. Cortex
, vol.17
, pp. 2443-2452
-
-
Izhikevich, E.M.1
-
4
-
-
79959853243
-
Spatio-temporal credit assignment in neuronal population learning
-
pmid: 21738460
-
J. Friedrich, R. Urbanczik, W. Senn, Spatio-temporal credit assignment in neuronal population learning. PLOS Comput. Biol. 7, e1002092 (2011). doi: 10.1371/journal.pcbi.1002092; pmid: 21738460
-
(2011)
PLOS Comput. Biol
, vol.7
-
-
Friedrich, J.1
Urbanczik, R.2
Senn, W.3
-
5
-
-
77649334232
-
Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
-
pmid: 19842989
-
F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Comput. 22, 467-510 (2010). doi: 10.1162/neco.2009.11-08-901; pmid: 19842989
-
(2010)
Neural Comput
, vol.22
, pp. 467-510
-
-
Ponulak, F.1
Kasiński, A.2
-
6
-
-
84864668988
-
The chronotron: A neuron that learns to fire temporally precise spike patterns
-
pmid: 22879876
-
R. V. Florian, The chronotron: A neuron that learns to fire temporally precise spike patterns. PLOS ONE 7, e40233 (2012). doi: 10.1371/journal.pone.0040233; pmid: 22879876
-
(2012)
PLOS ONE
, vol.7
-
-
Florian, R.V.1
-
7
-
-
84877829714
-
A new supervised learning algorithm for spiking neurons
-
pmid: 23517101
-
Y. Xu, X. Zeng, S. Zhong, A new supervised learning algorithm for spiking neurons. Neural Comput. 25, 1472-1511 (2013). doi: 10.1162/NECO-a-00450; pmid: 23517101
-
(2013)
Neural Comput
, vol.25
, pp. 1472-1511
-
-
Xu, Y.1
Zeng, X.2
Zhong, S.3
-
8
-
-
84901228908
-
Learning precisely timed spikes
-
pmid: 24768299
-
R. M. Memmesheimer, R. Rubin, B. P. Olveczky, H. Sompolinsky, Learning precisely timed spikes. Neuron 82, 925-938 (2014). doi: 10.1016/j.neuron.2014.03.026; pmid: 24768299
-
(2014)
Neuron
, vol.82
, pp. 925-938
-
-
Memmesheimer, R.M.1
Rubin, R.2
Olveczky, B.P.3
Sompolinsky, H.4
-
10
-
-
84893201625
-
To spike, or when to spike?
-
pmid: 24468508
-
R. Gütig, To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134-139 (2014). doi: 10.1016/j.conb.2014.01.004; pmid: 24468508
-
(2014)
Curr. Opin. Neurobiol
, vol.25
, pp. 134-139
-
-
Gütig, R.1
-
11
-
-
0347362917
-
Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
-
pmid: 14687542
-
H. S. Seung, Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40, 1063-1073 (2003). doi: 10.1016/S0896-6273(03)00761-X; pmid: 14687542
-
(2003)
Neuron
, vol.40
, pp. 1063-1073
-
-
Seung, H.S.1
-
12
-
-
33344478663
-
The tempotron: A neuron that learns spike timing-based decisions
-
pmid: 16474393
-
R. Gütig, H. Sompolinsky, The tempotron: A neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420-428 (2006). doi: 10.1038/nn1643; pmid: 16474393
-
(2006)
Nat. Neurosci
, vol.9
, pp. 420-428
-
-
Gütig, R.1
Sompolinsky, H.2
-
13
-
-
35348872545
-
Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances
-
pmid: 17652414
-
I. R. Fiete, M. S. Fee, H. S. Seung, Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038-2057 (2007). doi: 10.1152/jn.01311.2006; pmid: 17652414
-
(2007)
J. Neurophysiol
, vol.98
, pp. 2038-2057
-
-
Fiete, I.R.1
Fee, M.S.2
Seung, H.S.3
-
14
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257-286 (1989). doi: 10.1109/5.18626
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-286
-
-
Rabiner, L.R.1
-
15
-
-
84961230134
-
-
At first sight, it seems that losing the clue timing eliminates almost all the necessary feedback information, and asking for a specific number of spikes seems irrelevant because we do not really care about the total number of spikes if we only get at least one spike for each clue. However, a varying spike count per clue would indicate that the detector is operating in a regime in which noise could suppress or add spikes, which implies that the detector would not function reliably when the clues are embedded in background activity. This suggests that the number of spikes could serve as an objective function to stabilize an effective synaptic configuration and might also suffice for learning such a configuration from random initial conditions
-
At first sight, it seems that losing the clue timing eliminates almost all the necessary feedback information, and asking for a specific number of spikes seems irrelevant because we do not really care about the total number of spikes if we only get at least one spike for each clue. However, a varying spike count per clue would indicate that the detector is operating in a regime in which noise could suppress or add spikes, which implies that the detector would not function reliably when the clues are embedded in background activity. This suggests that the number of spikes could serve as an objective function to stabilize an effective synaptic configuration and might also suffice for learning such a configuration from random initial conditions.
-
-
-
-
16
-
-
85026939350
-
-
(neural membrane time constants rarely exceed a few tens of milliseconds), it has to fire rather promptly in response to a clue, if at all
-
Because a neuron's memory for previous inputs decays rapidly (neural membrane time constants rarely exceed a few tens of milliseconds), it has to fire rather promptly in response to a clue, if at all.
-
Because A Neuron's Memory for Previous Inputs Decays Rapidly
-
-
-
17
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron Madaline and backpropagation
-
B. Widrow, M. A. Lehr, 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation. Proc. IEEE 78, 1415-1442 (1990). doi: 10.1109/5.58323
-
(1990)
Proc. IEEE
, vol.78
, pp. 1415-1442
-
-
Widrow, B.1
Lehr, M.A.2
-
18
-
-
85156222481
-
Learning in spiking neural assemblies
-
S. Becker, S. Thrun, K. Obermayer, Eds. (MIT Press
-
D. Barber, "Learning in spiking neural assemblies," in Advances in Neural Information Processing Systems, S. Becker, S. Thrun, K. Obermayer, Eds. (MIT Press, 2002), vol. 15, pp. 149-156.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 149-156
-
-
Barber, D.1
-
19
-
-
33646801243
-
Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
-
pmid: 16764506
-
J. P. Pfister, T. Toyoizumi, D. Barber, W. Gerstner, Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput. 18, 1318-1348 (2006). doi: 10.1162/neco.2006.18.6.1318; pmid: 16764506
-
(2006)
Neural Comput
, vol.18
, pp. 1318-1348
-
-
Pfister, J.P.1
Toyoizumi, T.2
Barber, D.3
Gerstner, W.4
-
20
-
-
85026943311
-
-
Although a population of 135 neurons (with 80 synapses each) required more than 3000 trials of reinforcement learning (4), the single integrate-and-fire neuron underlying the present study required an average of eight or four trials, when learning was implemented with the multi-spike tempotron or the correlation-based approximation (discussion and materials and methods, correlation-based learning), respectively. In fact, based on aggregate labels the task could be readily solved by a single neuron with only 20 synapses (table S2). Similarly strong performance differences between other neural implementations of gradient-based and reinforcement learning (11) have been reported (12) in the context of a binary classification task
-
Although a population of 135 neurons (with 80 synapses each) required more than 3000 trials of reinforcement learning (4), the single integrate-and-fire neuron underlying the present study required an average of eight or four trials, when learning was implemented with the multi-spike tempotron or the correlation-based approximation (discussion and materials and methods, correlation-based learning), respectively. In fact, based on aggregate labels the task could be readily solved by a single neuron with only 20 synapses (table S2). Similarly strong performance differences between other neural implementations of gradient-based and reinforcement learning (11) have been reported (12) in the context of a binary classification task.
-
-
-
-
21
-
-
34347347169
-
Probabilistic reasoning by neurons
-
pmid: 17546027
-
T. Yang, M. N. Shadlen, Probabilistic reasoning by neurons. Nature 447, 1075-1080 (2007). doi: 10.1038/nature05852; pmid: 17546027
-
(2007)
Nature
, vol.447
, pp. 1075-1080
-
-
Yang, T.1
Shadlen, M.N.2
-
22
-
-
0033667165
-
Synaptic plasticity: Taming the beast
-
pmid: 11127835
-
L. F. Abbott, S. B. Nelson, Synaptic plasticity: Taming the beast. Nat. Neurosci. 3 (suppl.), 1178-1183 (2000). doi: 10.1038/81453; pmid: 11127835
-
(2000)
Nat. Neurosci
, vol.3
, pp. 1178-1183
-
-
Abbott, L.F.1
Nelson, S.B.2
-
23
-
-
68049143463
-
Time-warp-invariant neuronal processing
-
pmid: 19582146
-
R. Gütig, H. Sompolinsky, Time-warp-invariant neuronal processing. PLOS Biol. 7, e1000141 (2009). doi: 10.1371/ journal.pbio.1000141; pmid: 19582146
-
(2009)
PLOS Biol
, vol.7
-
-
Gütig, R.1
Sompolinsky, H.2
-
24
-
-
85026943550
-
-
Linguistic Data Consortium
-
R. G. Leonard, G. Doddington, TIDIGITS, vol. LDC93S10 (Linguistic Data Consortium, 1993).
-
(1993)
TIDIGITS
, vol.LDC93S10
-
-
Leonard, R.G.1
Doddington, G.2
-
25
-
-
38949179110
-
Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
-
pmid: 18167538
-
T. Masquelier, R. Guyonneau, S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLOS ONE 3, e1377 (2008). doi: 10.1371/journal.pone.0001377; pmid: 18167538
-
(2008)
PLOS ONE
, vol.3
-
-
Masquelier, T.1
Guyonneau, R.2
Thorpe, S.J.3
-
26
-
-
84876928403
-
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
-
pmid: 23633941
-
B. Nessler, M. Pfeiffer, L. Buesing, W. Maass, Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLOS Comput. Biol. 9, e1003037 (2013). pmid: 23633941
-
(2013)
PLOS Comput. Biol
, vol.9
-
-
Nessler, B.1
Pfeiffer, M.2
Buesing, L.3
Maass, W.4
-
27
-
-
0025318244
-
Perceptual neural organization: Some approaches based on network models and information theory
-
pmid: 2183677
-
R. Linsker, Perceptual neural organization: Some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257-281 (1990). doi: 10.1146/ annurev.ne.13.030190.001353; pmid: 2183677
-
(1990)
Annu. Rev. Neurosci
, vol.13
, pp. 257-281
-
-
Linsker, R.1
-
28
-
-
0037868943
-
Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity
-
pmid: 12736341
-
R. Gütig, R. Aharonov, S. Rotter, H. Sompolinsky, Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci. 23, 3697-3714 (2003). pmid: 12736341
-
(2003)
J. Neurosci
, vol.23
, pp. 3697-3714
-
-
Gütig, R.1
Aharonov, R.2
Rotter, S.3
Sompolinsky, H.4
-
29
-
-
84875830166
-
Updating dopamine reward signals
-
pmid: 23267662
-
W. Schultz, Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229-238 (2013). doi: 10.1016/ j.conb.2012.11.012; pmid: 23267662
-
(2013)
Curr. Opin. Neurobiol
, vol.23
, pp. 229-238
-
-
Schultz, W.1
-
30
-
-
84862213022
-
Timing is not everything: Neuromodulation opens the STDP gate
-
pmid: 21423532
-
V. Pawlak, J. R. Wickens, A. Kirkwood, J. N. Kerr, Timing is not everything: Neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 2, 146 (2010). doi: 10.3389/ fnsyn.2010.00146; pmid: 21423532
-
(2010)
Front. Synaptic Neurosci
, vol.2
, pp. 146
-
-
Pawlak, V.1
Wickens, J.R.2
Kirkwood, A.3
Kerr, J.N.4
-
31
-
-
0025078744
-
Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex
-
pmid: 1975639
-
A. Artola, S. Bröcher, W. Singer, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69-72 (1990). doi: 10.1038/347069a0; pmid: 1975639
-
(1990)
Nature
, vol.347
, pp. 69-72
-
-
Artola, A.1
Bröcher, S.2
Singer, W.3
-
32
-
-
84865401265
-
The spike-timing dependence of plasticity
-
pmid: 22920249
-
D. E. Feldman, The spike-timing dependence of plasticity. Neuron 75, 556-571 (2012). doi: 10.1016/j.neuron.2012.08.001; pmid: 22920249
-
(2012)
Neuron
, Issue.75
, pp. 556-571
-
-
Feldman, D.E.1
-
33
-
-
84879057191
-
Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo
-
pmid: 23359858
-
V. Pawlak, D. S. Greenberg, H. Sprekeler, W. Gerstner, J. N. Kerr, Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. eLife 2, e00012 (2013). doi: 10.7554/eLife.00012; pmid: 23359858
-
(2013)
ELife
, vol.2
-
-
Pawlak, V.1
Greenberg, D.S.2
Sprekeler, H.3
Gerstner, W.4
Kerr, J.N.5
-
34
-
-
84879815802
-
Multiple instance classification: Review, taxonomy and comparative study
-
J. Amores, Multiple instance classification: Review, taxonomy and comparative study. Artif. Intell. 201, 81-105 (2013). doi: 10.1016/j.artint.2013.06.003
-
(2013)
Artif. Intell
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
35
-
-
0000107975
-
Relations between two sets of variates
-
H. Hotelling, Relations between two sets of variates. Biometrika 28, 321-377 (1936). doi: 10.1093/biomet/28.3-4.321
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
36
-
-
0026586030
-
Self-organizing neural network that discovers surfaces in random-dot stereograms
-
pmid: 1729650
-
S. Becker, G. E. Hinton, Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355, 161-163 (1992). doi: 10.1038/355161a0; pmid: 1729650
-
(1992)
Nature
, vol.355
, pp. 161-163
-
-
Becker, S.1
Hinton, G.E.2
-
37
-
-
0002469309
-
Mutual information maximization: Models of cortical self-organization
-
S. Becker, Mutual information maximization: models of cortical self-organization. Network 7, 7-31 (1996). doi: 10.1088/ 0954-898X/7/1/003
-
(1996)
Network
, vol.7
, pp. 7-31
-
-
Becker, S.1
-
38
-
-
57749208694
-
Experience with moving visual stimuli drives the early development of cortical direction selectivity
-
pmid: 18946471
-
Y. Li, S. D. Van Hooser, M. Mazurek, L. E. White, D. Fitzpatrick, Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456, 952-956 (2008). doi: 10.1038/nature07417; pmid: 18946471
-
(2008)
Nature
, vol.456
, pp. 952-956
-
-
Li, Y.1
Van Hooser, S.D.2
Mazurek, M.3
White, L.E.4
Fitzpatrick, D.5
-
39
-
-
84861325335
-
Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex
-
pmid: 22623671
-
S. D. Van Hooser et al., Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex. J. Neurosci. 32, 7258-7266 (2012). doi: 10.1523/JNEUROSCI.0230-12.2012; pmid: 22623671
-
(2012)
J. Neurosci
, vol.32
, pp. 7258-7266
-
-
Van Hooser, S.D.1
-
40
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
pmid: 11936959
-
L. Wiskott, T. J. Sejnowski, Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 14, 715-770 (2002). doi: 10.1162/089976602317318938; pmid: 11936959
-
(2002)
Neural Comput
, vol.14
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.J.2
-
41
-
-
51749124671
-
Unsupervised natural experience rapidly alters invariant object representation in visual cortex
-
pmid: 18787171
-
N. Li, J. J. DiCarlo, Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321, 1502-1507 (2008). pmid: 18787171
-
(2008)
Science
, vol.321
, pp. 1502-1507
-
-
Li, N.1
DiCarlo, J.J.2
-
42
-
-
84868108811
-
The computational power of astrocyte mediated synaptic plasticity
-
pmid: 23125832
-
R. Min, M. Santello, T. Nevian, The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6, 93 (2012). doi: 10.3389/fncom.2012.00093; pmid: 23125832
-
(2012)
Front. Comput. Neurosci
, vol.6
, pp. 93
-
-
Min, R.1
Santello, M.2
Nevian, T.3
-
43
-
-
0037468832
-
Pyramidal neuron as twolayer neural network
-
pmid: 12670427
-
P. Poirazi, T. Brannon, B. W. Mel, Pyramidal neuron as twolayer neural network. Neuron 37, 989-999 (2003). doi: 10.1016/S0896-6273(03)00149-1; pmid: 12670427
-
(2003)
Neuron
, vol.37
, pp. 989-999
-
-
Poirazi, P.1
Brannon, T.2
Mel, B.W.3
-
44
-
-
84875252689
-
A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex
-
pmid: 23273272
-
M. Larkum, A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex. Trends Neurosci. 36, 141-151 (2013). doi: 10.1016/j.tins.2012.11.006; pmid: 23273272
-
(2013)
Trends Neurosci
, vol.36
, pp. 141-151
-
-
Larkum, M.1
-
45
-
-
0029664973
-
Ca2+ signaling requirements for long-term depression in the hippocampus
-
pmid: 8608000
-
J. A. Cummings, R. M. Mulkey, R. A. Nicoll, R. C. Malenka, Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825-833 (1996). doi: 10.1016/ S0896-6273(00)80102-6; pmid: 8608000
-
(1996)
Neuron
, vol.16
, pp. 825-833
-
-
Cummings, J.A.1
Mulkey, R.M.2
Nicoll, R.A.3
Malenka, R.C.4
-
46
-
-
0033578855
-
Long-term potentiation-A decade of progress?
-
pmid: 10489359
-
R. C. Malenka, R. A. Nicoll, Long-term potentiation-A decade of progress? Science 285, 1870-1874 (1999). doi: 10.1126/ science.285.5435.1870; pmid: 10489359
-
(1999)
Science
, vol.285
, pp. 1870-1874
-
-
Malenka, R.C.1
Nicoll, R.A.2
|