메뉴 건너뛰기




Volumn 351, Issue 6277, 2016, Pages

Spiking neurons can discover predictive features by aggregate-label learning

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; CELLS AND CELL COMPONENTS; INFORMATION; LEARNING; SENSORY SYSTEM;

EID: 84961221485     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.aab4113     Document Type: Article
Times cited : (124)

References (47)
  • 1
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • R. S. Sutton, Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9 (1988).
    • (1988) Mach. Learn , vol.3 , pp. 9
    • Sutton, R.S.1
  • 2
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • pmid: 9054347
    • W. Schultz, P. Dayan, P. R. Montague, A neural substrate of prediction and reward. Science 275, 1593-1599 (1997). doi: 10.1126/science.275.5306.1593; pmid: 9054347
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 3
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of STDP and dopamine signaling
    • pmid: 17220510
    • E. M. Izhikevich, Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443-2452 (2007). doi: 10.1093/cercor/bhl152; pmid: 17220510
    • (2007) Cereb. Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.M.1
  • 4
    • 79959853243 scopus 로고    scopus 로고
    • Spatio-temporal credit assignment in neuronal population learning
    • pmid: 21738460
    • J. Friedrich, R. Urbanczik, W. Senn, Spatio-temporal credit assignment in neuronal population learning. PLOS Comput. Biol. 7, e1002092 (2011). doi: 10.1371/journal.pcbi.1002092; pmid: 21738460
    • (2011) PLOS Comput. Biol , vol.7
    • Friedrich, J.1    Urbanczik, R.2    Senn, W.3
  • 5
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
    • pmid: 19842989
    • F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting. Neural Comput. 22, 467-510 (2010). doi: 10.1162/neco.2009.11-08-901; pmid: 19842989
    • (2010) Neural Comput , vol.22 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 6
    • 84864668988 scopus 로고    scopus 로고
    • The chronotron: A neuron that learns to fire temporally precise spike patterns
    • pmid: 22879876
    • R. V. Florian, The chronotron: A neuron that learns to fire temporally precise spike patterns. PLOS ONE 7, e40233 (2012). doi: 10.1371/journal.pone.0040233; pmid: 22879876
    • (2012) PLOS ONE , vol.7
    • Florian, R.V.1
  • 7
    • 84877829714 scopus 로고    scopus 로고
    • A new supervised learning algorithm for spiking neurons
    • pmid: 23517101
    • Y. Xu, X. Zeng, S. Zhong, A new supervised learning algorithm for spiking neurons. Neural Comput. 25, 1472-1511 (2013). doi: 10.1162/NECO-a-00450; pmid: 23517101
    • (2013) Neural Comput , vol.25 , pp. 1472-1511
    • Xu, Y.1    Zeng, X.2    Zhong, S.3
  • 8
    • 84901228908 scopus 로고    scopus 로고
    • Learning precisely timed spikes
    • pmid: 24768299
    • R. M. Memmesheimer, R. Rubin, B. P. Olveczky, H. Sompolinsky, Learning precisely timed spikes. Neuron 82, 925-938 (2014). doi: 10.1016/j.neuron.2014.03.026; pmid: 24768299
    • (2014) Neuron , vol.82 , pp. 925-938
    • Memmesheimer, R.M.1    Rubin, R.2    Olveczky, B.P.3    Sompolinsky, H.4
  • 10
    • 84893201625 scopus 로고    scopus 로고
    • To spike, or when to spike?
    • pmid: 24468508
    • R. Gütig, To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134-139 (2014). doi: 10.1016/j.conb.2014.01.004; pmid: 24468508
    • (2014) Curr. Opin. Neurobiol , vol.25 , pp. 134-139
    • Gütig, R.1
  • 11
    • 0347362917 scopus 로고    scopus 로고
    • Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
    • pmid: 14687542
    • H. S. Seung, Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40, 1063-1073 (2003). doi: 10.1016/S0896-6273(03)00761-X; pmid: 14687542
    • (2003) Neuron , vol.40 , pp. 1063-1073
    • Seung, H.S.1
  • 12
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decisions
    • pmid: 16474393
    • R. Gütig, H. Sompolinsky, The tempotron: A neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420-428 (2006). doi: 10.1038/nn1643; pmid: 16474393
    • (2006) Nat. Neurosci , vol.9 , pp. 420-428
    • Gütig, R.1    Sompolinsky, H.2
  • 13
    • 35348872545 scopus 로고    scopus 로고
    • Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances
    • pmid: 17652414
    • I. R. Fiete, M. S. Fee, H. S. Seung, Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038-2057 (2007). doi: 10.1152/jn.01311.2006; pmid: 17652414
    • (2007) J. Neurophysiol , vol.98 , pp. 2038-2057
    • Fiete, I.R.1    Fee, M.S.2    Seung, H.S.3
  • 14
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257-286 (1989). doi: 10.1109/5.18626
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 15
    • 84961230134 scopus 로고    scopus 로고
    • At first sight, it seems that losing the clue timing eliminates almost all the necessary feedback information, and asking for a specific number of spikes seems irrelevant because we do not really care about the total number of spikes if we only get at least one spike for each clue. However, a varying spike count per clue would indicate that the detector is operating in a regime in which noise could suppress or add spikes, which implies that the detector would not function reliably when the clues are embedded in background activity. This suggests that the number of spikes could serve as an objective function to stabilize an effective synaptic configuration and might also suffice for learning such a configuration from random initial conditions
    • At first sight, it seems that losing the clue timing eliminates almost all the necessary feedback information, and asking for a specific number of spikes seems irrelevant because we do not really care about the total number of spikes if we only get at least one spike for each clue. However, a varying spike count per clue would indicate that the detector is operating in a regime in which noise could suppress or add spikes, which implies that the detector would not function reliably when the clues are embedded in background activity. This suggests that the number of spikes could serve as an objective function to stabilize an effective synaptic configuration and might also suffice for learning such a configuration from random initial conditions.
  • 16
    • 85026939350 scopus 로고    scopus 로고
    • (neural membrane time constants rarely exceed a few tens of milliseconds), it has to fire rather promptly in response to a clue, if at all
    • Because a neuron's memory for previous inputs decays rapidly (neural membrane time constants rarely exceed a few tens of milliseconds), it has to fire rather promptly in response to a clue, if at all.
    • Because A Neuron's Memory for Previous Inputs Decays Rapidly
  • 17
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron Madaline and backpropagation
    • B. Widrow, M. A. Lehr, 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation. Proc. IEEE 78, 1415-1442 (1990). doi: 10.1109/5.58323
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 18
    • 85156222481 scopus 로고    scopus 로고
    • Learning in spiking neural assemblies
    • S. Becker, S. Thrun, K. Obermayer, Eds. (MIT Press
    • D. Barber, "Learning in spiking neural assemblies," in Advances in Neural Information Processing Systems, S. Becker, S. Thrun, K. Obermayer, Eds. (MIT Press, 2002), vol. 15, pp. 149-156.
    • (2002) Advances in Neural Information Processing Systems , vol.15 , pp. 149-156
    • Barber, D.1
  • 19
    • 33646801243 scopus 로고    scopus 로고
    • Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
    • pmid: 16764506
    • J. P. Pfister, T. Toyoizumi, D. Barber, W. Gerstner, Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput. 18, 1318-1348 (2006). doi: 10.1162/neco.2006.18.6.1318; pmid: 16764506
    • (2006) Neural Comput , vol.18 , pp. 1318-1348
    • Pfister, J.P.1    Toyoizumi, T.2    Barber, D.3    Gerstner, W.4
  • 20
    • 85026943311 scopus 로고    scopus 로고
    • Although a population of 135 neurons (with 80 synapses each) required more than 3000 trials of reinforcement learning (4), the single integrate-and-fire neuron underlying the present study required an average of eight or four trials, when learning was implemented with the multi-spike tempotron or the correlation-based approximation (discussion and materials and methods, correlation-based learning), respectively. In fact, based on aggregate labels the task could be readily solved by a single neuron with only 20 synapses (table S2). Similarly strong performance differences between other neural implementations of gradient-based and reinforcement learning (11) have been reported (12) in the context of a binary classification task
    • Although a population of 135 neurons (with 80 synapses each) required more than 3000 trials of reinforcement learning (4), the single integrate-and-fire neuron underlying the present study required an average of eight or four trials, when learning was implemented with the multi-spike tempotron or the correlation-based approximation (discussion and materials and methods, correlation-based learning), respectively. In fact, based on aggregate labels the task could be readily solved by a single neuron with only 20 synapses (table S2). Similarly strong performance differences between other neural implementations of gradient-based and reinforcement learning (11) have been reported (12) in the context of a binary classification task.
  • 21
    • 34347347169 scopus 로고    scopus 로고
    • Probabilistic reasoning by neurons
    • pmid: 17546027
    • T. Yang, M. N. Shadlen, Probabilistic reasoning by neurons. Nature 447, 1075-1080 (2007). doi: 10.1038/nature05852; pmid: 17546027
    • (2007) Nature , vol.447 , pp. 1075-1080
    • Yang, T.1    Shadlen, M.N.2
  • 22
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: Taming the beast
    • pmid: 11127835
    • L. F. Abbott, S. B. Nelson, Synaptic plasticity: Taming the beast. Nat. Neurosci. 3 (suppl.), 1178-1183 (2000). doi: 10.1038/81453; pmid: 11127835
    • (2000) Nat. Neurosci , vol.3 , pp. 1178-1183
    • Abbott, L.F.1    Nelson, S.B.2
  • 23
    • 68049143463 scopus 로고    scopus 로고
    • Time-warp-invariant neuronal processing
    • pmid: 19582146
    • R. Gütig, H. Sompolinsky, Time-warp-invariant neuronal processing. PLOS Biol. 7, e1000141 (2009). doi: 10.1371/ journal.pbio.1000141; pmid: 19582146
    • (2009) PLOS Biol , vol.7
    • Gütig, R.1    Sompolinsky, H.2
  • 24
    • 85026943550 scopus 로고
    • Linguistic Data Consortium
    • R. G. Leonard, G. Doddington, TIDIGITS, vol. LDC93S10 (Linguistic Data Consortium, 1993).
    • (1993) TIDIGITS , vol.LDC93S10
    • Leonard, R.G.1    Doddington, G.2
  • 25
    • 38949179110 scopus 로고    scopus 로고
    • Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
    • pmid: 18167538
    • T. Masquelier, R. Guyonneau, S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLOS ONE 3, e1377 (2008). doi: 10.1371/journal.pone.0001377; pmid: 18167538
    • (2008) PLOS ONE , vol.3
    • Masquelier, T.1    Guyonneau, R.2    Thorpe, S.J.3
  • 26
    • 84876928403 scopus 로고    scopus 로고
    • Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
    • pmid: 23633941
    • B. Nessler, M. Pfeiffer, L. Buesing, W. Maass, Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLOS Comput. Biol. 9, e1003037 (2013). pmid: 23633941
    • (2013) PLOS Comput. Biol , vol.9
    • Nessler, B.1    Pfeiffer, M.2    Buesing, L.3    Maass, W.4
  • 27
    • 0025318244 scopus 로고
    • Perceptual neural organization: Some approaches based on network models and information theory
    • pmid: 2183677
    • R. Linsker, Perceptual neural organization: Some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257-281 (1990). doi: 10.1146/ annurev.ne.13.030190.001353; pmid: 2183677
    • (1990) Annu. Rev. Neurosci , vol.13 , pp. 257-281
    • Linsker, R.1
  • 28
    • 0037868943 scopus 로고    scopus 로고
    • Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity
    • pmid: 12736341
    • R. Gütig, R. Aharonov, S. Rotter, H. Sompolinsky, Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci. 23, 3697-3714 (2003). pmid: 12736341
    • (2003) J. Neurosci , vol.23 , pp. 3697-3714
    • Gütig, R.1    Aharonov, R.2    Rotter, S.3    Sompolinsky, H.4
  • 29
    • 84875830166 scopus 로고    scopus 로고
    • Updating dopamine reward signals
    • pmid: 23267662
    • W. Schultz, Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229-238 (2013). doi: 10.1016/ j.conb.2012.11.012; pmid: 23267662
    • (2013) Curr. Opin. Neurobiol , vol.23 , pp. 229-238
    • Schultz, W.1
  • 30
    • 84862213022 scopus 로고    scopus 로고
    • Timing is not everything: Neuromodulation opens the STDP gate
    • pmid: 21423532
    • V. Pawlak, J. R. Wickens, A. Kirkwood, J. N. Kerr, Timing is not everything: Neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 2, 146 (2010). doi: 10.3389/ fnsyn.2010.00146; pmid: 21423532
    • (2010) Front. Synaptic Neurosci , vol.2 , pp. 146
    • Pawlak, V.1    Wickens, J.R.2    Kirkwood, A.3    Kerr, J.N.4
  • 31
    • 0025078744 scopus 로고
    • Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex
    • pmid: 1975639
    • A. Artola, S. Bröcher, W. Singer, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69-72 (1990). doi: 10.1038/347069a0; pmid: 1975639
    • (1990) Nature , vol.347 , pp. 69-72
    • Artola, A.1    Bröcher, S.2    Singer, W.3
  • 32
    • 84865401265 scopus 로고    scopus 로고
    • The spike-timing dependence of plasticity
    • pmid: 22920249
    • D. E. Feldman, The spike-timing dependence of plasticity. Neuron 75, 556-571 (2012). doi: 10.1016/j.neuron.2012.08.001; pmid: 22920249
    • (2012) Neuron , Issue.75 , pp. 556-571
    • Feldman, D.E.1
  • 33
    • 84879057191 scopus 로고    scopus 로고
    • Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo
    • pmid: 23359858
    • V. Pawlak, D. S. Greenberg, H. Sprekeler, W. Gerstner, J. N. Kerr, Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. eLife 2, e00012 (2013). doi: 10.7554/eLife.00012; pmid: 23359858
    • (2013) ELife , vol.2
    • Pawlak, V.1    Greenberg, D.S.2    Sprekeler, H.3    Gerstner, W.4    Kerr, J.N.5
  • 34
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • J. Amores, Multiple instance classification: Review, taxonomy and comparative study. Artif. Intell. 201, 81-105 (2013). doi: 10.1016/j.artint.2013.06.003
    • (2013) Artif. Intell , vol.201 , pp. 81-105
    • Amores, J.1
  • 35
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling, Relations between two sets of variates. Biometrika 28, 321-377 (1936). doi: 10.1093/biomet/28.3-4.321
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 36
    • 0026586030 scopus 로고
    • Self-organizing neural network that discovers surfaces in random-dot stereograms
    • pmid: 1729650
    • S. Becker, G. E. Hinton, Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355, 161-163 (1992). doi: 10.1038/355161a0; pmid: 1729650
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 37
    • 0002469309 scopus 로고    scopus 로고
    • Mutual information maximization: Models of cortical self-organization
    • S. Becker, Mutual information maximization: models of cortical self-organization. Network 7, 7-31 (1996). doi: 10.1088/ 0954-898X/7/1/003
    • (1996) Network , vol.7 , pp. 7-31
    • Becker, S.1
  • 38
    • 57749208694 scopus 로고    scopus 로고
    • Experience with moving visual stimuli drives the early development of cortical direction selectivity
    • pmid: 18946471
    • Y. Li, S. D. Van Hooser, M. Mazurek, L. E. White, D. Fitzpatrick, Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456, 952-956 (2008). doi: 10.1038/nature07417; pmid: 18946471
    • (2008) Nature , vol.456 , pp. 952-956
    • Li, Y.1    Van Hooser, S.D.2    Mazurek, M.3    White, L.E.4    Fitzpatrick, D.5
  • 39
    • 84861325335 scopus 로고    scopus 로고
    • Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex
    • pmid: 22623671
    • S. D. Van Hooser et al., Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex. J. Neurosci. 32, 7258-7266 (2012). doi: 10.1523/JNEUROSCI.0230-12.2012; pmid: 22623671
    • (2012) J. Neurosci , vol.32 , pp. 7258-7266
    • Van Hooser, S.D.1
  • 40
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • pmid: 11936959
    • L. Wiskott, T. J. Sejnowski, Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 14, 715-770 (2002). doi: 10.1162/089976602317318938; pmid: 11936959
    • (2002) Neural Comput , vol.14 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 41
    • 51749124671 scopus 로고    scopus 로고
    • Unsupervised natural experience rapidly alters invariant object representation in visual cortex
    • pmid: 18787171
    • N. Li, J. J. DiCarlo, Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321, 1502-1507 (2008). pmid: 18787171
    • (2008) Science , vol.321 , pp. 1502-1507
    • Li, N.1    DiCarlo, J.J.2
  • 42
    • 84868108811 scopus 로고    scopus 로고
    • The computational power of astrocyte mediated synaptic plasticity
    • pmid: 23125832
    • R. Min, M. Santello, T. Nevian, The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6, 93 (2012). doi: 10.3389/fncom.2012.00093; pmid: 23125832
    • (2012) Front. Comput. Neurosci , vol.6 , pp. 93
    • Min, R.1    Santello, M.2    Nevian, T.3
  • 43
    • 0037468832 scopus 로고    scopus 로고
    • Pyramidal neuron as twolayer neural network
    • pmid: 12670427
    • P. Poirazi, T. Brannon, B. W. Mel, Pyramidal neuron as twolayer neural network. Neuron 37, 989-999 (2003). doi: 10.1016/S0896-6273(03)00149-1; pmid: 12670427
    • (2003) Neuron , vol.37 , pp. 989-999
    • Poirazi, P.1    Brannon, T.2    Mel, B.W.3
  • 44
    • 84875252689 scopus 로고    scopus 로고
    • A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex
    • pmid: 23273272
    • M. Larkum, A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex. Trends Neurosci. 36, 141-151 (2013). doi: 10.1016/j.tins.2012.11.006; pmid: 23273272
    • (2013) Trends Neurosci , vol.36 , pp. 141-151
    • Larkum, M.1
  • 45
    • 0029664973 scopus 로고    scopus 로고
    • Ca2+ signaling requirements for long-term depression in the hippocampus
    • pmid: 8608000
    • J. A. Cummings, R. M. Mulkey, R. A. Nicoll, R. C. Malenka, Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825-833 (1996). doi: 10.1016/ S0896-6273(00)80102-6; pmid: 8608000
    • (1996) Neuron , vol.16 , pp. 825-833
    • Cummings, J.A.1    Mulkey, R.M.2    Nicoll, R.A.3    Malenka, R.C.4
  • 46
    • 0033578855 scopus 로고    scopus 로고
    • Long-term potentiation-A decade of progress?
    • pmid: 10489359
    • R. C. Malenka, R. A. Nicoll, Long-term potentiation-A decade of progress? Science 285, 1870-1874 (1999). doi: 10.1126/ science.285.5435.1870; pmid: 10489359
    • (1999) Science , vol.285 , pp. 1870-1874
    • Malenka, R.C.1    Nicoll, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.